Name: \qquad
25 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [4 points] Find values of m so that the function $y=e^{m x}$ is a solution of this differential equation:

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

2. [6 points]

a) Verify that $y=-1 /(x+c)$ is a one-parameter family of solutions of the differential equation $y^{\prime}=y^{2}$.
b) Find the solution $y(x)$ of the initial value problem: $\quad y^{\prime}=y^{2}, \quad y(1)=1$.
c) What is the largest interval of definition I for the solution in part $\boldsymbol{b})$?
3. [5 points] Verify that

$$
y(x)=e^{-x^{2}}+e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t
$$

is a solution to the differential equation $\frac{d y}{d x}+2 x y=1$.
4. [4 points] Determine a differential equation for the (instantaneous) velocity $v(t)$ of a falling body of mass m if air resistance is proportional to the velocity. Assume the upward direction is positive. (Hints. $m a=F$ where F is the net force. The only forces are the two shown in the figure. Denote the acceleration of gravity by $g>0$.)

5. [6 points] I claim that $x=c_{1} \cos t+c_{2} \sin t$ is a two-parameter family of solutions of the secondorder differential equation $x^{\prime \prime}+x=0$.
a) Verify this claim.
b) Find the solution of the initial value problem with $x(\pi / 2)=0$ and $x^{\prime}(\pi / 2)=1$.

Extra Credit. [1 point] Write down a differential equation which does not have any real solutions. Provide a one-sentence explanation of why it has no solutions. (Hint. Do not be limited by normal form $d y / d x=f(x, y)$.)

EXTRA SPACE

