Homework 8.4

due 11:59pm Monday 11 December, by Gradescope as usual

The matrix exponential. For a square matrix \mathbf{A}, the matrix exponential function $e^{\mathbf{A t} t}$ is defined as

$$
e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t+\mathbf{A}^{2} \frac{t^{2}}{2}+\cdots+\mathbf{A}^{k} \frac{t^{k}}{k!}+\cdots=\sum_{k=0}^{\infty} \mathbf{A}^{k} \frac{t^{k}}{k!}
$$

Notice that if $t=0$ then the matrix exponential is just the identity matrix:

$$
e^{\mathbf{A} 0}=\mathbf{I}
$$

The formula for $e^{\mathbf{A} t}$ includes the ordinary (scalar) exponential as a special case: if $\mathbf{A}=(a)$ is a 1×1 matrix with entry a then $e^{\mathbf{A} t}=e^{a t}=1+a t+(a t)^{2} / 2+(a t)^{3} / 3!+\ldots$
One can only compute $e^{\mathbf{A} t}$ by hand in easy cases. First of all you need to be able to compute powers of \mathbf{A}; you have to know how to do matrix-matrix multiplication. Then one "easy case" is when \mathbf{A} is a diagonal matrix. Another is when \mathbf{A} is a nonzero matrix for which there is a power \mathbf{A}^{k} which is the zero matrix, because then the infinite series becomes a finite sum.

The key fact about the matrix exponential, which makes it useful for differential equations, is the usual derivative rule for exponentials:

$$
\frac{d}{d t} e^{\mathbf{A} t}=\mathbf{A} e^{\mathbf{A} t}
$$

The matrix exponential allows us to solve any 1st-order, linear, constant-coefficient system of differential equations with ease. For homogeneous systems

$$
\mathbf{X}^{\prime}=\mathbf{A X}
$$

the general solution is

$$
\mathbf{X}(t)=e^{\mathbf{A} t} \mathbf{C}
$$

Here $\mathbf{X}(t)$ is a column vector of the solution components and \mathbf{C} is a column vector of constants:

$$
\mathbf{X}(t)=\left(\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right), \quad \mathbf{C}=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)
$$

Notice that $\mathbf{X}(0)=\mathbf{C}$ in the general solution formula (because $e^{\mathbf{A} 0}=\mathbf{I}$). If \mathbf{X}_{0} is a vector then the solution of the initial value problem

$$
\mathbf{X}^{\prime}=\mathbf{A} \mathbf{X}, \quad \mathbf{X}(0)=\mathbf{X}_{0}
$$

is

$$
\mathbf{X}(t)=e^{\mathbf{A} t} \mathbf{X}_{0}
$$

In other words, \mathbf{C} is the vector of initial values.
As usual, a computer can do the job! In Matlab or Octave, $e^{\mathbf{A} t}=\operatorname{expm}(\mathrm{A} * \mathrm{t}$). (The command $\exp ()$ gives the wrong answer here. It exponentiates entrywise.) So, if you have entered a square matrix A and a vector C , then the solution $X(t)$ at a particular time t is
$\gg X=\operatorname{expm}(A * t) * C$

Graded for Correctness

In Problems 1 and 2 use the definition to compute $e^{\mathbf{A t} t}$ by hand, and simplify.
Problem 1. $\mathbf{A}=\left(\begin{array}{lll}0 & 0 & 0 \\ 3 & 0 & 0 \\ 5 & 1 & 0\end{array}\right)$
Problem 2. $\mathbf{A}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
Problems 3 and 4 require technology, presumably Matlab. Compute the matrix $e^{\mathbf{A t} t}$ and the (particular) vector $\mathbf{X}(t)=e^{\mathbf{A} t} \mathbf{C}$.
Problem 3. $\mathbf{A}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \mathbf{C}=\binom{0}{2}, t=1$
Problem 4. $\mathbf{A}=\left(\begin{array}{ll}0 & 1 \\ 6 & 1\end{array}\right), \mathbf{C}=\binom{1}{0}, t=0.5$
Problems 5 and 6 relate the above calculations to familiar stuff. Use the auxiliary equation method (§4.3) to solve the initial value problem by hand. You will get the same numbers as in Problems 3 and 4. Explain this by writing the differential equation as a 1st-order system and stating explicitly what $y(t)$ corresponds to in Problems 3 and 4.
Problem 5. Solve the initial value problem and compute $y(t)$ at $t=0.5$:

$$
y^{\prime \prime}-y^{\prime}-6 y=0, \quad y(0)=1, y^{\prime}(0)=0
$$

Problem 6. Solve the initial value problem and compute $y(t)$ at $t=1$:

$$
y^{\prime \prime}+y=0, \quad y(0)=0, y^{\prime}(0)=2
$$

Graded for Completeness

Use the definition to compute $e^{\mathbf{A t} t}$ by hand, and simplify.
Problem 7. $\mathbf{A}=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & -2 & -2\end{array}\right)$
Use technology to compute the matrix $e^{\mathbf{A} t}$ and the vector $\mathbf{X}(t)=e^{\mathbf{A} t} \mathbf{C}$.
Problem 8. $\mathbf{A}=\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & 0 & -1 \\ -2 & -3 & -4\end{array}\right), \mathbf{C}=\left(\begin{array}{c}-1 \\ 9 \\ 1\end{array}\right), t=\pi$

