SAMPLE Midterm Exam
No textbook or notes or calculator.
Please write your final answer in the box (if present).

1. (10 pts) Find the solution to the initial value problem:
[first-orderlinea] $\frac{d y}{d x}+3 y=x, \quad y(0)=5$.

$$
\begin{aligned}
& \left(e^{3 x} y\right)^{\prime}=x e^{3 x} \\
& e^{3 x} y=\int x e^{3 x} d x=\times \frac{e^{3 x}}{3}-\int 1 \cdot \frac{e^{3 x}}{3} d x=\frac{1}{3} \times e^{3 x}-\frac{1}{3} \frac{1}{3} e^{3 x}+c \\
& y(x)=\frac{1}{3} x-\frac{1}{9}+C e^{-3 x} \\
& 5=y(0)=0-\frac{1}{9}+C \cdot 1 \\
& c=5+\frac{1}{9}=\frac{46}{9}
\end{aligned}
$$

$$
y(x)=\frac{1}{3} x-\frac{1}{9}+\frac{46}{9} e^{-3 x}
$$

2. (10 pts) Verify that the family of functions is a solution of the given differential equation:

$$
\begin{aligned}
& \frac{d P}{d t}=P(1-P), \quad P=\frac{c_{1} e^{t}}{1+c_{1} e^{t}} \\
& \frac{d P}{d t}=\frac{c_{1} e^{t}\left(1+c_{1} e^{t}\right)^{t}-c_{1} e^{t}\left(0+c_{1} e^{t t}\right.}{\left(1+c_{1} e^{t}\right)^{2}}=\frac{c_{1} e^{2}}{\left(1+c_{1} e^{t}\right)^{2}} \\
& P(1-P)=\frac{c_{1} e^{t}}{1+c_{1} e^{t}}\left(\frac{1+c_{1} e^{t}}{1+c_{1} e^{t}}-\frac{c_{1} e^{t}}{1+c_{1} e^{t}}\right) \\
& =\frac{c_{1} e^{t}\left(1+c_{1} e^{t}-c_{1} e^{t}\right)}{\left(1+c_{1} e^{-L}\right)}=\frac{c_{1} e^{t}}{\left(1+c_{1} e^{t}\right)^{2}}
\end{aligned}
$$

3. (a) (5 pts) The ODE

$$
\frac{d y}{d x}=y \sin x
$$

has the direction field shown below. Sketch the solution which passes through $\left(x_{0}, y_{0}\right)=(4,-2)$. Please extend the sketched solution to the interval $-6 \leq x \leq 6$.

(b) (10 pts) Solve the following initial value problem -give an exact formula $y(x)$ for the solution!. Then sketch the solution you find on the direction field above:

$$
\begin{aligned}
& \text { [Separable] } \frac{d y}{d x}=y \sin x, \quad y(0)=2 . \\
& \frac{d y}{y}=\sin x d x \\
& \ln |y|=-\cos x+C \\
& y(x)=A e^{-\cos x} \\
& z=y(0)=A e^{-\cos 0}=A e^{-1} \\
& \begin{aligned}
y(x) & =2 e \cdot e^{-\cos x} \\
& =2 e^{-\cos x+1}
\end{aligned}
\end{aligned}
$$

4. (10 pts) Find the general solution of the ODE:

$$
\text { [separable] } \quad \frac{d z}{d t}=e^{3 t} e^{2 z}
$$

$$
\begin{gathered}
\frac{d z}{e^{2 z}}=e^{3 t} d t \\
\int e^{-2 z} d z=\int e^{3 t} d t \\
\frac{1}{-2} e^{-2 z}=\frac{1}{3} e^{3 t}+c^{-2 z}=-\frac{2}{3} e^{3 t}+c_{1} \\
e^{-2 z} \\
-2 z=\ln \left(c_{1}-\frac{2}{3} e^{3 t}\right)
\end{gathered}
$$

$$
z(t)=-\frac{1}{2} \ln \left(C_{1}-\frac{2}{3} e^{3 t}\right)
$$

5. (a) (10 pts) Show that the following differential equation is exact:

$$
\begin{aligned}
& (5 y-2 x) d y-2 y d x=0 \\
& \underbrace{-2 y}_{M} d x+\underbrace{(5 y-2 x) y^{\prime}-2 y=0}_{N} \\
& (y=0
\end{aligned}
$$

$$
\frac{\partial M}{\partial y}=-2, \frac{\partial N}{\partial x}=-2 \therefore \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

$$
\therefore \text { exact }
$$

(b) (10 pts) Find the general solution to the differential equation in part (a).

$$
\begin{gathered}
M=-2 y, \quad N=5 y-2 x \\
\frac{\partial f}{\partial x}=M=-2 y \\
f(x, y)=-2 y x+h(y) \\
\therefore \quad \begin{array}{r}
5 y-2 x= \\
\Re_{N}
\end{array} \frac{\partial f}{\partial y}=-2 x+h^{\prime}(y) \quad h^{\prime}(y)=5 y \\
\therefore \quad h(y)=\frac{5}{2} y^{2} \\
\therefore f(x, y)=-2 y x+\frac{5}{2} y^{2} \\
-2 x y+\frac{5}{2} y^{2}=C
\end{gathered}
$$

6. (a) (10 pts) A drug is infused into a patient's bloodstream, and we denote the amount (grams) of the drug by $x(t)$. The infusion is at a constant rate of r grams per second. Simultaneously, the drug is removed by the biochemical process in the patient's body at a rate proportional to the amount $x(t)$ of drug which is present at time t. Using k for the constant of proportionality, determine a differential equation (DE) for the amount $x(t)$.

(b) (10 pts) Assume there is no drug in the patient's bloodstream at time $t=0$. Solve this initial value problem, which includes the DE in part (a). (Your solution will contain constants r and k.)

$$
\begin{aligned}
& \text { [separable] } \frac{d x}{d t}=r-k x, \quad x(0)=0 \\
& \begin{array}{l}
\frac{d x}{r-k x}=d t \\
\frac{-1}{k} \ln |r-k x|=t+c \\
|r-k x|=e^{-k t+c_{1}} \\
r-k x=A e^{-k t} \\
x(t)=\frac{r-A e^{-k t}}{k}
\end{array} \quad \therefore A=r \frac{r-A}{k} \\
& \therefore \quad \therefore(t)=\frac{r-r e^{-k t}}{k} \\
& \therefore x(t)=\frac{r}{k}\left(1-e^{-k t}\right)
\end{aligned}
$$

Extra Credit. (3 pts) A more realistic version of problem $\boldsymbol{6}$ would include the fact that a drug infusion does not go on forever. Assume it stops after time $T>0$. Write down an ODE IVP for this improved model, and sketch a representative solution. (The equation is solvable in pieces, but an exact solution is not needed here.)

$$
\begin{aligned}
& \text { DE: } \frac{d x}{d t}=f(t)-k x, \quad f(t)= \\
& x(0)=0 \\
& \xrightarrow{\text { sketch son: }}=\frac{k}{k} \uparrow_{t}^{x}
\end{aligned}
$$

7. Consider the initial value problem: $\quad y^{\prime \prime}+y=0, \quad y(0)=2, y^{\prime}(0)=0$ (10 pts) Find the solution

$$
\begin{aligned}
& m^{2}+1=0 \\
& m= \pm i \quad \therefore \quad y(x)=c_{1} \cos x+c_{2} \sin x \\
& 2=y(0)=c_{1} \cdot 1+c_{2} \cdot 0 \quad \therefore c_{1}=2, c_{2}=0 \\
& 0=y^{\prime}(0)=-c_{1} \cdot 0+c_{2} \cdot 1
\end{aligned}
$$

$$
y(x)=2 \cos x
$$

$$
y^{(4)}-3 y^{\prime \prime}-18 y=0
$$

(Hint: Certain 4 th-order polynomials can be factored if you know how to factor quadratics.)

$$
\begin{aligned}
& m^{4}-3 m^{2}-18=0 \\
& \left(m^{2}-6\right)\left(m^{2}+3\right)=0 \\
& m= \pm \sqrt{6}, \quad m= \pm \sqrt{3} i
\end{aligned}
$$

$$
y(x)=\frac{c_{1} e^{-\sqrt{6} x}+c_{2} e^{+\sqrt{6} x}+c_{3} \cos (\sqrt{3} x)}{+c_{4} \sin (\sqrt{3} x)}
$$

