Name:
MATH F302
Differential Equations (Bueler)

SAMPLE Midterm Exam

No textbook or notes or calculator.
Please write your final answer in the box (if present).

1. (10 pts) Find the solution to the initial value problem:

$$
\frac{d y}{d x}+3 y=x, \quad y(0)=5
$$

$$
y(x)=\square
$$

2. (10 pts) Verify that the family of functions is a solution of the given differential equation:

$$
\frac{d P}{d t}=P(1-P), \quad P=\frac{c_{1} e^{t}}{1+c_{1} e^{t}}
$$

3. (a) (5pts) The ODE

$$
\frac{d y}{d x}=y \sin x
$$

has the direction field shown below. Sketch the solution which passes through $\left(x_{0}, y_{0}\right)=(4,-2)$. Please extend the sketched solution to the interval $-6 \leq x \leq 6$.

(b) (10 pts) Solve the following initial value problem-give an exact formula $y(x)$ for the solution!. Then sketch the solution you find on the direction field above:

$$
\frac{d y}{d x}=y \sin x, \quad y(0)=2
$$

\square
4. (10 pts) Find the general solution of the ODE:

$$
\frac{d z}{d t}=e^{3 t} e^{2 z}
$$

5. (a) (10 pts) Show that the following differential equation is exact:

$$
(5 y-2 x) y^{\prime}-2 y=0
$$

(b) (10 pts) Find the general solution to the differential equation in part (a).
6. (a) (10 pts) A drug is infused into a patient's bloodstream, and we denote the amount (grams) of the drug by $x(t)$. The infusion is at a constant rate of r grams per second. Simultaneously, the drug is removed by the biochemical process in the patient's body at a rate proportional to the amount $x(t)$ of drug which is present at time t. Using k for the constant of proportionality, determine a differential equation (DE) for the amount $x(t)$.
(b) (10 pts) Assume there is no drug in the patient's bloodstream at time $t=0$. Solve this initial value problem, which includes the DE in part (a). (Your solution will contain constants r and k.)

$$
x(t)=\square
$$

Extra Credit. (3 pts) A more realistic version of problem $\boldsymbol{6}$ would include the fact that a drug infusion does not go on forever. Assume it stops after time $T>0$. Write down an ODE IVP for this improved model, and sketch a representative solution. (The equation is solvable in pieces, but an exact solution is not needed here.)
7. Consider the initial value problem: $\quad y^{\prime \prime}+y=0, \quad y(0)=2, y^{\prime}(0)=0$
(10 pts) Find the solution. Show your steps.

$$
y(x)=\square
$$

8. (10 pts) Find the general solution: $y^{(4)}-3 y^{\prime \prime}-18 y=0$
(Hint: Certain 4th-order polynomials can be factored if you know how to factor quadratics.)

$$
y(x)=\square
$$

