Name:

MATH F302 UX1 Differential Equations (Bueler)

30 April or 1–2 May, 2019

Final Exam

Proctored. 150 minutes. 135 points total. No textbook or notes or calculator. Please write your final answer in the box if one is provided.

1. (10 pts) Find the general solution:

$$2y'' + 2y' + 5y = 0$$

$$y(x) =$$

2. (15 pts) Find the simplified general solution. (*Hint.* Separation of variables. Partial fractions.) $\frac{dP}{dt} = P - P^2$

$$P(t) =$$

3. Consider this direction field, which is for a certain differential equation $\frac{dy}{dx} = f(x, y)$.

(a) $(10 \ pts)$ Which differential equation is shown? Circle one.

А.	$\frac{dy}{dx} = 2x - 1$	D.	$\frac{dy}{dx} = y\sin(x)$
В.	$\frac{dy}{dx} = y^2$	E.	$\frac{dy}{dx} = y - x$
С.	$\frac{dy}{dx} = x + y$	F.	$\frac{dy}{dx} = xy$

(b) (5 pts) Sketch on the direction field the solution y(x) to the initial value problem:

$$\frac{dy}{dx} = f(x, y), \qquad y(1) = 0.$$

Label this curve as (b).

(c) (5 pts) Also sketch two steps of length h = 1 of the Euler method for solving this different initial value problem:

$$\frac{dy}{dx} = f(x, y), \qquad y(1) = 1.$$

Label this curve as (c).

4. (10 pts) Solve this initial value problem for a first-order linear differential equation:

 $y' - y = -x, \qquad y(0) = 0$

5. (10 pts) Use the definition of the Laplace transform to show that

$$\mathcal{L}\left\{y'(t)\right\} = sY(s) - y(0)$$

(Note we write Y(s) for $\mathcal{L} \{y(t)\}$.)

6. $(15 \ pts)$ Use the Laplace transform to solve the initial value problem:

y'' - y = 0, y(0) = 4, y'(0) = 0

$$y(t) =$$

7. (10 pts) Verify that $y(t) = \frac{1}{2} (e^t - \sin(t) - \cos(t))$ solves the initial value problem: $y'' + y = e^t, \qquad y(0) = 0, \quad y'(0) = 0$

(Do not solve the problem from scratch. Verify that all parts of the IVP are satisfied.)

8. (10 pts) Write the following ODE as a first-order system: $y'' + y = e^t$

Extra Credit I. (3 pts) Write several lines of MATLAB/OCTAVE code to solve problem 7, at the top of this page, using ode45. In particular, show how to generate the approximate value of y(3).

>>

>>

>>

9. (15 pts) Find and simplify the general solution of the system

$$\mathbf{X}' = \begin{pmatrix} -1 & 1\\ 3 & 1 \end{pmatrix} \mathbf{X}$$

You may use the fact that the eigenvalues and eigenvectors of $\mathbf{A} = \begin{pmatrix} -1 & 1 \\ 3 & 1 \end{pmatrix}$ are

$$\lambda_1 = -2, \quad \lambda_2 = 2, \qquad \mathbf{K}_1 = \begin{pmatrix} 2\\ -2 \end{pmatrix}, \quad \mathbf{K}_2 = \begin{pmatrix} 1\\ 3 \end{pmatrix}$$

Extra Credit II. (3 pts) Compute and simplify $e^{\mathbf{A}t}$ if $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. (*Hint.* Pattern in \mathbf{A}^k ?)

10. Consider the following initial value problem:

$$y'' - y = 0,$$
 $y(0) = 0,$ $y'(0) = 2$

(a) (15 pts) Solve the problem using power series, starting from the expression $y(x) = \sum_{n=0}^{\infty} c_n x^n$.

Your solution should make it clear how c_0 and c_1 are found, and it should include a recurrence relation for the coefficients. Find c_0, c_1, c_2, c_3, c_4 specifically.

(b) $(5 \ pts)$ What is the radius of convergence R of the power series in part (a)?

BRIEF TABLE OF INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$$

$$\int \sec^2 x \, dx = \tan x + c$$

$$\int \frac{1}{x} \, dx = \ln |x| + c$$

$$\int \sec x \tan x \, dx = \sec x + c$$

$$\int u \, dv = uv - \int v du$$

$$\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + c$$

$$\int e^x \, dx = e^x + c$$

$$\int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + c$$

$$\int \frac{1}{a^2 - x^2} \, dx = \frac{1}{2a} \ln \left|\frac{x + a}{x - a}\right| + c$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \arcsin\left(\frac{x}{a}\right) + c$$

$$\int \ln x \, dx = x \ln x - x + c$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \frac{1}{a} \operatorname{arcsec}\left(\frac{x}{a}\right) + c$$

$$\int \sin x \, dx = -\cos x + c$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln \left|x + \sqrt{x^2 - a^2}\right| + c$$

$$\int \cos x \, dx = \sin x + c$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} \, dx = \ln \left|x + \sqrt{x^2 + a^2}\right| + c$$

$$\int \tan x \, dx = \ln |\sec x| + c$$

$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \ln \left|x + \sqrt{x^2 + a^2}\right| + c$$

Maclaurin Series

Interval

$e^x = 1 + rac{x}{1!} + rac{x^2}{2!} + rac{x^3}{3!} + \dots = \sum_{n=0}^\infty rac{1}{n!} x^n$	$(-\infty,\infty)$
$\cos x = 1 - rac{x^2}{2!} + rac{x^4}{4!} - rac{x^6}{6!} + \dots = \sum_{n=0}^\infty rac{(-1)^n}{(2n)!} x^{2n}$	$(-\infty,\infty)$
$\sin x = x - rac{x^3}{3!} + rac{x^5}{5!} - rac{x^7}{7!} + \dots = \sum_{n=0}^\infty rac{(-1)^n}{(2n+1)!} x^{2n+1}$	$(-\infty,\infty)$
$ an^{-1}x = x - rac{x^3}{3} + rac{x^5}{5} - rac{x^7}{7} + \dots = \sum_{n=0}^\infty rac{(-1)^n}{2n+1} x^{2n+1}$	[-1,1] (2)
$\cosh x = 1 + rac{x^2}{2!} + rac{x^4}{4!} + rac{x^6}{6!} + \dots = \sum_{n=0}^\infty rac{1}{(2n)!} x^{2n}$	$(-\infty,\infty)$
$\sinh x = x + rac{x^3}{3!} + rac{x^5}{5!} + rac{x^7}{7!} + \dots = \sum_{n=0}^\infty rac{1}{(2n+1)!} x^{2n+1}$	$(-\infty,\infty)$
$\ln(1+x)=x-rac{x^2}{2}+rac{x^3}{3}-rac{x^4}{4}+\cdots=\sum_{n=1}^\inftyrac{\left(-1 ight)^{n+1}}{n}x^n$	(-1, 1]
$rac{1}{1-x} = 1+x+x^2+x^3+\dots = \sum_{n=0}^\infty x^n$	(-1, 1)

TABLE 4.4.1 Trial Particular Solutions

g(x)	Form of y _p	
1. 1 (any constant)	Α	
2. $5x + 7$	Ax + B	
3. $3x^2 - 2$	$Ax^2 + Bx + C$	
4. $x^3 - x + 1$	$Ax^3 + Bx^2 + Cx + E$	
5. $\sin 4x$	$A\cos 4x + B\sin 4x$	
6. $\cos 4x$	$A\cos 4x + B\sin 4x$	
7. e^{5x}	Ae^{5x}	
8. $(9x-2)e^{5x}$	$(Ax + B)e^{5x}$	
9. $x^2 e^{5x}$	$(Ax^2 + Bx + C)e^{5x}$	
10. $e^{3x} \sin 4x$	$Ae^{3x}\cos 4x + Be^{3x}\sin 4x$	
11. $5x^2 \sin 4x$	$(Ax^{2} + Bx + C)\cos 4x + (Ex^{2} + Fx + G)\sin 4x$	
12. $xe^{3x}\cos 4x$	$(Ax + B)e^{3x}\cos 4x + (Cx + E)e^{3x}\sin 4x$	

TABLE OF LAPLACE TRANSFORMS:

$$\mathcal{L} \{1\} = \frac{1}{s} \qquad \qquad \mathcal{L} \{te^{at}\} = \frac{1}{(s-a)^2} \\ \mathcal{L} \{t\} = \frac{1}{s^2} \qquad \qquad \mathcal{L} \{te^{at}\} = \frac{n!}{(s-a)^{n+1}} \\ \mathcal{L} \{t^n\} = \frac{n!}{s^{n+1}} \qquad \qquad \mathcal{L} \{t^ne^{at}\} = \frac{n!}{(s-a)^{n+1}} \\ \mathcal{L} \{t^n\} = \frac{n!}{s^{n+1}} \qquad \qquad \mathcal{L} \{e^{at}\sin(kt)\} = \frac{k}{(s-a)^2 + k^2} \\ \mathcal{L} \{t^{-1/2}\} = \frac{\sqrt{\pi}}{s^{1/2}} \qquad \qquad \mathcal{L} \{e^{at}\cos(kt)\} = \frac{s-a}{(s-a)^2 + k^2} \\ \mathcal{L} \{t^{1/2}\} = \frac{\sqrt{\pi}}{2s^{3/2}} \qquad \qquad \mathcal{L} \{e^{at}\cos(kt)\} = \frac{s-a}{(s-a)^2 + k^2} \\ \mathcal{L} \{t^n\} = \frac{\Gamma(\alpha+1)}{s^{\alpha+1}} \qquad \qquad \mathcal{L} \{t\sin(kt)\} = \frac{2ks}{(s^2 + k^2)^2} \\ \mathcal{L} \{e^{at}\} = \frac{1}{s-a} \qquad \qquad \mathcal{L} \{t\cos(kt)\} = \frac{s^2 - k^2}{(s^2 + k^2)^2} \\ \mathcal{L} \{e^{at}\} = \frac{1}{s-a} \qquad \qquad \mathcal{L} \{e^{at}f(t)\} = F(s-a) \\ \mathcal{L} \{\sin(kt)\} = \frac{k}{s^2 + k^2} \qquad \qquad \mathcal{L} \{\mathcal{U}(t-a)\} = \frac{e^{-as}}{s} \\ \mathcal{L} \{\cos(kt)\} = \frac{s}{s^2 + k^2} \qquad \qquad \mathcal{L} \{f(t-a)\mathcal{U}(t-a)\} = e^{-as}F(s) \\ \mathcal{L} \{\sin(kt)\} = \frac{k}{s^2 - k^2} \qquad \qquad \mathcal{L} \{f(t-a)\mathcal{U}(t-a)\} = e^{-as}\mathcal{L} \{g(t+a)\} \\ \mathcal{L} \{\cosh(kt)\} = \frac{s}{s^2 - k^2} \qquad \qquad \mathcal{L} \{f^n(t)\} = (-1)^n \frac{d^n}{ds^n}F(s) \\ \mathcal{L} \{f^{(n)}(t)\} = s^n F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0) \\ \qquad \qquad (f * g)(t) = \int_0^t f(\tau)g(t-\tau) d\tau \\ \mathcal{L} \{f * g\} = F(s)G(s) \end{cases}$$

SPACE BELOW IS AVAILABLE FOR COMPUTATIONS

CLEARLY LABEL ANYTHING YOU WANT GRADED

SPACE BELOW IS AVAILABLE FOR COMPUTATIONS