Midterm Exam
In-class. No book, notes, electronics, calculator, internet access, or communication with other people. Please write your solution in the box if provided. 100 points possible. 65 minutes maximum!

1. (6 pts) Solve the differential equation by separation of variables: $\quad \frac{d y}{d x}-2 x y^{2}=0$

$$
\begin{aligned}
& \int \frac{d y}{y^{2}}=\int 2 x d x=x^{2}+c \\
& -y^{-1}=x^{2}+c
\end{aligned}
$$

2. (6 pts) Verify that $y(t)=1 /(c-t)$ is a one-parameter family of solutions of the differential equation $\quad \frac{d y}{d t}=y^{2}$.

$$
\begin{aligned}
& y(t)=(c-t)^{-1} \\
& \frac{d y}{d t}=-(c-t)^{-2} \cdot(-1)=+(c-t)^{-2} \\
& y^{2}=\left[(c-t)^{-1}\right]^{2}=(c-t)^{-2}
\end{aligned}
$$

3. (15 pts) Determine whether the differential equation is exact. If it is exact, solve it and write the solution in the box: $\left(8 y^{3}-4 x\right) \frac{d y}{d x}=5 x+4 y$

$$
(\underbrace{(-5 x-4 y}_{M}) d x+(\underbrace{\left.8 y^{3}-4 x\right)}_{N} d y=0
$$

exact? $\frac{\partial M}{\partial y}=-4=\frac{\partial N}{\partial x} \sim y$ yo

So:

$$
\begin{aligned}
& f(x, y)=\int M d x=-\frac{5}{2} x^{2}-4 y x+g(y) \\
& =N=\frac{\partial f}{\partial y}=-4 x+g^{\prime}(y) \\
& g^{\prime}(y)=8 y^{3} \\
& g(y)=2 y^{4} \\
& f(x, y)=-\frac{5}{2} x^{2}-4 y x+2 y^{4}
\end{aligned}
$$

$$
8 y^{3}-4 x=N=\frac{\partial f}{\partial y}=-4 x+g^{\prime}(y)
$$

needs to be equation in $y \& x$ (not " $f=$ ")

$$
-\frac{5}{2} x^{2}-4 y x+2 y^{4}=c
$$

4. (15 pts) Solve the initial value problem, assuming L, R, E, i_{0} are constants:

$$
\begin{aligned}
& L \frac{d i}{d t}+R i=E, \quad i(0)=i_{0} \\
& \frac{d i}{d t}+\frac{R}{L} i=\frac{E}{L}
\end{aligned}
$$

as linear DE:

$$
\left.\begin{array}{rl}
\mu=e^{S(R / L) d t} & =e^{(R / L) t} \\
\left(e^{(R / L) t} i(t)\right)^{\prime} & =\frac{E}{L} e^{(R / L) t}
\end{array}\right\}
$$

$$
i(t)=\frac{E}{R}+\left(i_{0}-\frac{F}{R}\right) e^{-(R / L) t}
$$

5. (a) (8 pts) Find the general solution: $y^{\prime \prime}-y^{\prime}-12 y=0$

$$
\begin{aligned}
& m^{2}-m-12=0 \\
& (m-4)(m+3)=0
\end{aligned}
$$

$$
y(x)=c_{1} e^{4 x}+c_{2} e^{-3 x}
$$

(b) (8 pts) Show that your general solution in part (a) is built from a fundamental set of solutions.

$$
\begin{aligned}
& W\left(e^{4 x}, e^{-3 x}\right)=\operatorname{det}\left[\begin{array}{cc}
e^{4 x} & e^{-3 x} \\
4 e^{4 x} & -3 e^{-3 x}
\end{array}\right] \\
& \quad=-3 e^{x}-4 e^{x}=-7 e^{x} \neq 0
\end{aligned}
$$

${ }^{\uparrow}$
so $\left\{e^{4 x}, e^{-3 x}\right\}$ is a linearlyindependent of 2 suncting, so a fundamental set
6. (a) (5 pts) The direction field of the following differential equation is shown: $\frac{d x}{d t}=1+t x$ For each of the following points, sketch an approximate solution curve.

- $x(0)=-1$
- $x(-2)=2$

(b) (8 pts) Find the general solution of the differential equation in part (a). You may write the solution in integral form if you do not know how to do an integral.
as linear!

$$
\frac{d x}{d t}-t x=1
$$

also fine: is proportional to the difference between its tempera the and a constant ambient temperature. Write this differential equation, a model for the tempera/ ire $T(t)$. (Hint. This model has two constants.)

$$
\frac{d T}{d t}=k\left(T-T_{m}\right)
$$

note $k<0$ beaune heat flaws from not to cold
(b) (5 pts) Find the general solution of the differential equation in part (a).
separable: $\quad \int \frac{d T}{T-T_{m}}=\int k d t=k t+c$

$$
\begin{aligned}
\ln \left|T-T_{m}\right|= & k t+c \\
\left|T-T_{m}\right|= & e^{c} e^{k t} \\
T-T_{m}= & A e^{k t} \\
& T(t)=T_{m}+A e^{k t}
\end{aligned}
$$

(c) (5 pts$) \quad$ A thermometer-it is the object here-is initially at room temperature $20^{\circ} \mathrm{C}$. It is put in boiling water at $100^{\circ} \mathrm{C}$. After 2 seconds the thermometer reads $60^{\circ} \mathrm{C}$. What is the constant of

$$
\begin{aligned}
& \left.\begin{array}{l}
T_{(0)}=20 \\
T_{m}=100
\end{array}\right\} \\
& 20=100+A \therefore A=-80 \\
& \therefore T(t)=100-80 e^{k t} \\
& T(2)=60 \\
& \downarrow \\
& \frac{1}{2}=\frac{-40}{-80}=e^{2 k} \\
& \text { this is fine too } \\
& k=-\ln (2) / 2 \\
& k=\frac{\ln (1 / 2)}{2}=-\ln (2) / 2
\end{aligned}
$$

8. (a) (7 pts) Find the general solution of this third-order, constant-coefficient, homogeneous, and linear differential equation: $\quad y^{\prime \prime \prime}+y^{\prime}=0$

$$
\begin{gathered}
m^{3}+m=0 \\
m\left(m^{2}+1\right)=0 \\
m=0, m= \pm i \\
\sum^{0}=1
\end{gathered}
$$

$$
y(x)=c_{1}+c_{2} \cos x+c_{3} \sin x
$$

(b) (7 pts) The general solution in part (a) is a linear combination of three specific functions $f_{1}(x), f_{2}(x), f_{3}(x)$. State these functions and then compute and simplify the Wronskian.

$$
\begin{aligned}
& f_{1}(x)=1, f_{2}(x)=\cos x, f_{3}(x)=\sin x \\
& W\left(f_{1}, f_{2}, f_{3}\right)=\operatorname{det}\left[\begin{array}{ccc}
1 & \cos x & \sin x \\
0 & -\sin x & \cos x \\
0 & -\cos x & -\sin x
\end{array}\right]=1 \cdot \begin{array}{l}
1 \cdot\left(\sin ^{2} x+\cos ^{2} x\right) \\
\\
=1
\end{array}
\end{aligned}
$$

$$
w\left(f_{1}, f_{2}, f_{i}\right)^{2}=1
$$

Extra Credit. (3 pts) Find the general solution on $(0, \infty)$: $\quad x y^{\prime \prime}-y^{\prime}=0$

$$
\begin{aligned}
& w=y^{\prime}: \quad x w^{\prime}-w=0 \\
& \omega^{\prime}-\frac{1}{x} \omega=0 \sqrt{\text { mo abs. val neobed }} \\
& \mu=e^{\int-\frac{1}{x} d x}=e^{-\ln x}=e^{h^{\prime}(x)}=\frac{1}{x} \\
& \left(\frac{1}{x} w(x)\right)^{\prime}=0 \\
& y^{\prime}(x)=\omega(x)=c x
\end{aligned}
$$

