
Solving PDEs with Firedrake:
hyperelasticity

Patrick E. Farrell

University of Oxford

February 2024
P. E. Farrell Firedrake VI February 2024 1 / 15



Problem statement

We will build a solver for a nontrivial problem: compressible hyperelasticity.

Like linear elasticity, these equations describe how a structure deforms under a load. We set Ω
to be the undeformed configuration, and solve for a displacement u : Ω → Rd that describes
how each point X ∈ Ω maps to the deformed configuration:

x(X) = X + u(X).

Unlike linear elasticity, hyperelasticity is more realistic because
▶ (constitutive nonlinearity) the stress-strain curve is not necessarily linear;
▶ (geometric nonlinearity) the displacements are not necessarily small.

The equations are thus nonlinear.

P. E. Farrell Firedrake VI February 2024 2 / 15



Problem statement

P. E. Farrell Firedrake VI February 2024 3 / 15



Problem statement

Challenge!
In this exercise, you will write your own code from scratch.

Good news!
I will tell you everything you need to know.

P. E. Farrell Firedrake VI February 2024 4 / 15



Minimisation and saddle point problems

Section 2

Minimisation and saddle point problems

P. E. Farrell Firedrake VI February 2024 5 / 15

=



Minimisation and saddle point problems

Many problems can be cast in an optimisation framework.

For example, the Poisson equation arises as the minimisation of the Dirichlet energy

J(u) =
1

2

∫

Ω
∇u ·∇u dx−

∫

Ω
fu dx.

We can see this by taking its Fréchet derivative and setting it to zero:

Ju(u; v) := lim
ϵ→0

J(u+ ϵv)− J(u)

ϵ

= lim
ϵ→0

1

ϵ

(
ϵ

∫

Ω
∇u ·∇v dx+ ϵ2

∫

Ω
∇v ·∇v dx− ϵ

∫

Ω
fv dx

)

=

∫

Ω
∇u ·∇v dx−

∫

Ω
fv dx = 0,

the weak statement of the Poisson equation.
P. E. Farrell Firedrake VI February 2024 6 / 15



Minimisation and saddle point problems

We can get Firedrake to do this calculation for us:

# Functional to optimise
J = (

0.5 * inner(grad(u), grad(u))*dx
- inner(f, u)*dx
)

# Calculate the optimality condition (equation to solve)
F = derivative(J, u)

Firedrake uses derivative inside solve to calculate the Jacobian.

P. E. Farrell Firedrake VI February 2024 7 / 15



Hyperelasticity energy functional

Section 3

Hyperelasticity energy functional

P. E. Farrell Firedrake VI February 2024 8 / 15



Hyperelasticity energy functional

Our dramatis personae:

▶ Ω ⊂ Rd, the domain;
▶ u : Ω → Rd, the displacement;
▶ F = I +∇u, the deformation gradient;
▶ C = F⊤F , the right Cauchy–Green tensor;
▶ Ic = tr(C), J = det(F ), invariants;
▶ µ,λ, Lamé parameters.

With these, we form the compressible neo-Hookean energy:

E(u) =

∫

Ω

µ

2
(Ic − d)− µ ln J +

λ

2
(ln J)2 dx.

Ronald Rivlin

P. E. Farrell Firedrake VI February 2024 9 / 15

c

~tr= det(a)
-3 the stain

=
L fensor

that
matters



Hyperelasticity energy functional

Stating this in Firedrake:

d = mesh.geometric_dimension()
I = Identity(d)
F = I + grad(u)
C = F.T * F
I_c = tr(C)
J = det(F)

P. E. Farrell Firedrake VI February 2024 10 / 15



Continuation

Section 4

Continuation

P. E. Farrell Firedrake VI February 2024 11 / 15



Continuation

Continuation is an extremely powerful algorithm for solving difficult nonlinear problems.

Idea: construct a good initial guess by solving an easier problem.

Continuation
▶ Solve the problem for easy parameter value.
▶ While not finished:

▶ Use solution for previous parameter as initial guess for next parameter.
▶ Increment parameter.

P. E. Farrell Firedrake VI February 2024 12 / 15



Continuation

To do continuation in Firedrake, update the parameter in a loop and solve:

strain = Constant(0) # placeholder Constant
# Use the strain as our boundary condition value:
bcs = [... ,

DirichletBC(V.sub(1), strain, top),
...]

strains = ...
for strain_ in strains:

strain.assign(strain_) # update parameter value
solve(F == 0, u, bcs) # solve for next parameter

P. E. Farrell Firedrake VI February 2024 13 / 15



Continuation

Challenge!
Solve the equations of hyperelasticity on the domain

Ω = (0, 1)2 \




∪

ij

Dij



 ,

where i ∈ {1, . . . , 3}, j ∈ {1, . . . , 5}, and

Dij =

{
(x, y) ∈ R2 :

(
x− j − 1

4

)2

+

(
y − i

4

)2

≤ 0.12
}
.

P. E. Farrell Firedrake VI February 2024 14 / 15



Continuation

Challenge!

Solve the problem with µ = 4× 105, λ = 6× 105, and boundary conditions

u = (0, 0) on {y = 0},
u = (0,−s) on {y = 1},

for s = 0.1.

Apply natural (i.e. do-nothing, stress-free) boundary conditions on all other boundaries.

Hint: you will probably need to employ continuation.

P. E. Farrell Firedrake VI February 2024 15 / 15



repoi
-

github .com/pefarrell/
icerm2024



· there is a lot to unpack here !

- D Poisson equation code using only] codeagenda :
-

energy objective
functional poissonpy

② neo-Hookean hyper elasticity
· in theory 3 start with 2 slides ->

code S · in the code

hyperelasticitypy
⑤ continuation

④ Netgen and Open Cascade meshing

⑤ running
the code and visualizing

output



1X2

Y :2-IR
·P(X)

is deformativ -
u :M-> IR

is A displacement
% er)

3i-X

note: R is
X reference

Y(x)= X +
u( signation
-

M4=I +XU

- called E in elasticity literature



def:

((x) = my(x)T py(x) = FTF
is the right Cancy-Green Strainfenson

- ((x) = (I+xu)T(I+ yu) = I + Du +TuT
+MuTXu

def :
E(x) = E(((x) - I)

is the Strain tensor field
,
a.k . a . the

Green-StiVenant strain fensor

- E(u)= z(xu(x) + Xu(x)T + Xu(x)Tyu(x)



↓



def :

EZ


