•	F	10	1	J:	8 (8		5,	<u>)</u>	d d	S	•		97	r a	d		12	+	C	د ع	e	ו••	2	a	~	•	· · ·	•				J		. X		20	72	5	•
•	• •	· ·	•		N	1 f	4	Γ	H	6	5		2	۲		; . () (cyn 1	ed	ſſ	- - -		C1	۲		3	55	5 ;	3	ð '		•	· ·	•	•	•	• •	•	••••	•
•	· · ·	· · ·	C	re	Q.	it	•		0	1	•		ષ્ટ	ð	U	: : 	1	d	Ĺ,		•	•	· ·	•	• •		•	· ·	•	•		•	• •	•	•	•	· ·	•	· ·	•
•	· ·	• •		F	•	y	0	U	• •	ų	la	2	ł	•			2)	•	С	Ŷ	20	1	†	 J		27	S f	C	C	1		ወ	-	•	•	• •		• •	•
0 0 0	• •								C																								• •	•	•	•	• •	•	••••	
•	• •	••••		• •	•	•	•••	•	• •	•	•	•	• •	•	•	••••	•			• •	•	•	· ·	•	• •		•	••••	•		•	•	••••	•	•	•	• •	•	••••	•
0	• •	• •	•			•	• •	•	• •	•	•	•	o o	•	•	• •	•	•	•	• •	•		• •	•			•	• •	•	• •		•	• •	•	•	•	0 0 0 0		••••	•
•	• •	••••	•	• •	•	•	••••	•	••••	•	•	•	• •	•	•	••••	•	•	•	• •	•	•	· ·	•	• •		•	••••	•	•		•	••••	•	•	•	••••	•	••••	•
0		• •		• •		•	• •		• •	•	•		0 0 0 0		•	• •	•	•		• •				•				• •				•	• •			•	0 0	0	••••	•
0	• •	• •	•	• •	•	•	· ·	•	• •	•	•	•	• •	•	•	• •	•	•	•	• •	•	•	· ·	•	• •		•	• •	•	• •		•	••••	•	•	•	• •	•	• •	•
•			•		•	•	• •	•			•	•		•	•		•	•	•		•	•	• •	•			•		•			•	• •	•	0	•	• •	•		

Contin	num mechanics through Navier-Stokes
<u>plan</u> :	 notation & product rules just calc 3 divergence theorem & integration by ports
. .	 general (integral) curservutin general (integral) curservutin and its derivatives form) new to math grads? conservation of mass Conservation of mass actual physics
	 conservation of mass Jactual 11 (1 momentum Jactual Al (1 has free in compossible fluide)
· · · · · · · · · · · · ·	• Navier-Stokes for incompressible fluids a specific model

def. Suppose S: [0, T] × R³ → R, i.e. ^{general} S(t,x), is a scalar <u>source</u> Function, REIALL $\vec{F}: [o_T] \times \mathbb{R}^3 \rightarrow \mathbb{R}^3$, i.e. $\vec{F}(t,x)$, is a vector-Valued Elax Sunction We say the quantity of which G is the donsity (CESX) is conserved, where $\varphi: [o, T] \times \mathbb{R}^2 \to \mathbb{R}$ is the scalar density, if $\left[\frac{d}{dt}\left(\int_{S} \varphi \, dx\right) = -\int_{S} \vec{F} \cdot \hat{n} \, dS + \int_{S} S \, dx\right]$

for all SCR3 "q is conserved" we know how the means namely amount of q in S, RECALL S q dx changes in time, based on knowing how much leaves through the boundary (-SF.nds) and how much is created inside (Srsdx)

derivative form of (general) conservation	25
· true over every SZCR3:	RECAL
$d(\int \varphi dx) = - \int \vec{F} \cdot \hat{n} ds + \int s d$	~
$\frac{d}{dt}\left(\int_{\Sigma}\varphidx\right)\stackrel{\text{(f)}}{=} - \int_{\Sigma}\vec{F}\cdot\hat{n}dS + \int_{\Sigma}Sd$	· · · · · · · · · · · ·
· time derivative : LDC	· · · · · · · · · · · · ·
 time derivative: LDC d(Sr qdx) = Sr = St dx 	
· apply divergence theorem to flux surface in	tegral:
$\zeta = \hat{\Lambda} dS = (\nabla \cdot \hat{F} dx)$	· · · · · · · · · · · · ·
$\int_{\partial \Omega} \vec{F} \cdot \hat{n} dS = \int_{Z} \nabla \cdot \vec{F} dx$	· · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·

• thus rewrite \otimes as	RECAL
$\int_{\mathcal{X}} \left(\frac{\partial \mathcal{Q}}{\partial t} + \nabla \cdot \vec{F} - S \right) dx = 0$	
 since this is true for every we get a partial differential € 	guation (PDE)
form of conservation:	In real and
$\begin{bmatrix} \partial \varphi \\ \partial t \\ \partial t \end{bmatrix} + \nabla \cdot \vec{F} = S$	$\int f X_s dx = 0$ \Rightarrow
	f=0 a.e.

ne.	Eularian view in this (general) consorration view,
· · · · · · · · · · · · · · · · · · ·	the "control volume" R < R ³
	is fixed and does not move
	• This view is also taken when you
· · · ·	fix your coordinates (or numerical
· · ·	mesh) to the laboratory
· · ·	· versus: Lagrangion view where R=R(2) moves

Mass	conservation (a physics axiom)
	$\varphi(t,x) = \rho(t,x)$ fluid mass density
	unit: mass (scalar)
· · · · · · · ·	S(t,x) = 0 no mass creatin/annihilatin
	ū(t,x) velocity of fluid,
	$\vec{u}(t,x)$ velocity of fluid, (x = ctor) units: distance (x = ctor) time
	$\vec{F}(t,x) = \rho(t,x) \vec{u}(t,x) \text{mass flux}$ $T \text{units:} \text{area. time} (vector)$

in other words,	physicists	assume	
$\frac{d}{J_{E}}(S_{P})$	d×)=-{ >5	pū. ² ds +	0
for every (fixed	I) scr	3, as part of	any fluid model
in words: no			
or lost, so -	the chang	e in mass 15	n A
given volume	occurs only	by moving m	220
across the b	ounday of	The volume	· · · · · · · · · · ·

• Mass	conservation	in PDE	form:	
<td>$\frac{\partial \rho}{\partial t} + \nabla \cdot$</td> <td>(p ū) =</td> <td>0</td> <td>r.k.a. Continuity equation</td>	$\frac{\partial \rho}{\partial t} + \nabla \cdot$	(p ū) =	0	r.k.a. Continuity equation
<u>const</u>	ant density $\rho(t, x) = \rho_0 > 0$	<u>case</u> : is cms	tant the	
· · · · · · · · · ·	0+7.	$(\vec{u}) = 0$	malant - E	$\int \vec{u} \cdot \hat{n} dS = 0$ or $\forall SL$
	$\nabla \cdot \tilde{u} =$			ibility_

def. Suppose $\vec{S}: [0, T] \times \mathbb{R}^3 \to \mathbb{R}^3$ is a vector source function, and
source function, and
source function, and F: [0,7] × R ³ -> (3×3 matrices) for valued is a matrix-valued function.
is a matrix-valued function.
is a matrix-valued function. $\overline{q}(t,x)$ is conserved,
where $\vec{\varphi}: [o, \vec{\eta} \times \vec{R} \rightarrow \vec{R}]$ if
$\left[\frac{d}{dt}\left(\int_{x} \vec{\varphi} dx\right) = -\int_{x} F \hat{n} ds + \int_{x} \vec{s} dx\right]$

f=ma:. [f] = mass. $f=me^2$ time² dump conservation of momentum: momentum density $\vec{\varphi}(t,x) = \rho(t,x) \vec{u}(t,x)$ $\hat{\tau}_{units:} \xrightarrow{mass}_{areatine}$) internal "stress in fluid -sometimes: pû@û" $\sigma(t,x) = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix}$ $F(t,x) = (\rho \vec{u})\vec{u} - \sigma \qquad \text{momentum flux} \\ \uparrow units: \frac{mass}{maxtime} \quad \text{distance} \qquad \text{units same as:} \quad \frac{5\sigma}{arca} \quad \text{distance} \quad \text{d$ $(t,x) = \rho g$ body force (here $\lambda_{units:} \frac{mass dist}{volume time} = \frac{mass gravity}{are time}$, an example) $\vec{S}(t,x) = \rho \vec{g}$

Conservation of momentum	$\frac{d}{dt}\left(\int_{S} \vec{\varphi} dx\right) = -$	SFnds+Ssd× Br R
$\frac{d}{dt}\left(\sum_{r}p\vec{u}dx\right) = -$	$\int (\rho \vec{u} \vec{u} - \sigma) \hat{n} dS$	+ Spgdx
stresses finn inertia as a		weight density,
momentum Slux	tress density within inly as a	as a momentum source
	ntum Flux	

Component-wise	
if you work one con	ponent at a time then $\ddot{\varphi} = \rho \ddot{u}, F = \rho \vec{u} \vec{u}^{T} - \sigma, \vec{s} = \rho \vec{g}$
This is clearer: $\varphi = \rho u_i$ $\vec{F} = \rho u_i \vec{u} - \vec{\sigma}_i$	column i of 5
s = pgi thus: $\frac{d}{dt} \left(\sum_{x} pu_i dx \right) = - \int_{\partial x} pu_i$	· · · · · · · · · · · · · · · · · · ·
	$+ \int_{\mathcal{P}} \rho g_i dx$

component-wise PDE Sonn, from divergence theorem:
$\frac{\partial}{\partial t}(\rho u_i) + \nabla \cdot (\rho u_i \vec{u}) = \nabla \cdot \vec{\sigma}_i + \rho g_i$
expand by product rules:
$\frac{\partial \rho}{\partial t} u_{i} + \rho \frac{\partial u_{i}}{\partial t} + \nabla u_{i} \cdot (\rho \vec{u}) + u_{i} \nabla \cdot (\rho \vec{u})$ $= \nabla \cdot \vec{\sigma_{i}} + \rho g_{i}$ $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0$ $u_{se} mass conservation:$
$= \nabla \cdot \vec{\sigma_{i}} + \rho g i$
use mass conservation:
$\mathcal{O}\left(\frac{\partial u_{i}}{\partial t} + \vec{u} \cdot \nabla u_{i}\right) = \nabla \cdot \vec{\sigma}_{i}^{2} + \mathcal{O} g_{i}$

	re	20	25	ssemble to full vector/matrix					-	form:						· · ·																					
· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	•	· · ·				210		いて	+		ù		7	7	u		· · ·		7				+	· · · · · · · · · · · · · · · · · · ·	0 0			•	•	•	· · ·	•	· · ·	· · ·	•
																									• •										•		
• •	•	• •		• •		•			•	• •			• •	•	•	• •					• •		• •		• •			•				•	• •			• •	•
				• •																															•	• •	
• •		• •		• •						• •		•	• •			• •			• •		• •		• •		• •								• •		•	• •	
• •		• •		• •			• •			• •			• •			• •			• •		• •		• •		• •								• •		•	• •	
• •		• •		• •			• •			• •			• •			• •			• •		• •		• •		• •								• •		• •	• •	
		• •		• •			• •		•	• •			• •			• •			• •		• •		• •		• •								• •			• •	
		• •							•				• •								• •		• •		• •												
• •													• •					0	• •		• •				• •											• •	

general model for fluids P= density U= velocity pg= body fore mass conservation: J = internal stresses $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0$ momentum (and mass) conservation: $e\left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u}\right) = \nabla \cdot \sigma + e\vec{g}$ this is a common place modeling fluid to spart modeling fluid

def: given a velocity field û, for an det: grown a abstract Sunction $\phi(t,x)$ we call BSERVATION $\frac{d\varphi}{dt} = \frac{\partial \phi}{\partial t} + \vec{u} \cdot \nabla \phi$ the material time derivative of \$, or the derivative following the florid Ex: @ mass $\frac{\partial p}{\partial t} + \nabla \cdot (p \vec{u}) = 0$ $\Longrightarrow \frac{\partial \rho}{\partial t} + \vec{u} \cdot \nabla \rho = -\rho \nabla \cdot \vec{u}$

so mass	conservation can be writte	n
	$\frac{df}{df} = -\rho \nabla \cdot \vec{u}$. .
2 momen	tum	· · · · · · · · · · · · · · · · · · ·
· ·	$\mathcal{O}\left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u}\right) = \nabla \cdot \sigma$	$-+\rho\tilde{g}$
50 M DM	nentum conservation a	can be written
	$p = 7 \cdot 5 + p \cdot 9$	
which e	veryone associates to	
· ·	$m \hat{a} = F$	(Neuton's 2nd law)
· · · · · · · · · · · ·	= Friscous + Ford	2

next: • Navier -	-Stokes	for	in cm	pressible
and viscon	s fluids	· · · · · · · · ·		
volunteer possi conserv	bility?: ration of er	1e/gy,	with	application
later Bueler lecture: Veference displacement,	configurations	" and city		
· linear elast	icity	· · · · · · · · ·		· · · · · · · · · · · ·

model for	in compressible, viscous fluid « i.e. Navior- Stakes
axioms: ()	moss (p) is conserved
	nomentum (pù) is conserved
	momentum (pit) is conserved angular momentum is conserved This sneaks inI
implies incompress - ibility { (4)	mass density is constant where
Newtonian Viscous Fluid 25	O has a particular form

demo 2D Navier-Stokes $\vec{u} = [u_{o}, o]^T, u_{o} > o$ · Firedrake FE Solution Sluid code m bueler. github. io/ circulates u=0 u=0 this . fluid-solid-seminar/ The Way py/bueler/cavity.py animated .gif 7 no stress generated from famous "lid-driven cavits example Paraview (via . png)

in compressibility: If $\rho(t,x) = \rho_0 > 0$ is constant
then $\frac{\partial}{\partial t} + \nabla \cdot (R \bar{u}) = 0 \in \text{mass conservation}$
$ \Rightarrow \rho_0 \nabla \cdot \vec{u} = 0 \Leftrightarrow [\nabla \cdot \vec{u} = 0] $
Some people suy $\nabla \cdot \vec{u} = 0$ as the axiom
(assumption) of in compressibility, but from
mass conservation that would seem to allow
$\frac{d\rho}{d\tau} = -\rho \nabla \cdot \vec{u} = 0$

So	p	ís	not	constan	д,	but	it	ís.	(weir	dly)
pres	eru	ed	عه	it mo	ves	aro	und	• • •	· · · · · · ·	
					• • • •					
	• • •				• • • •					
	• • •									
	• • •							• • •		

Viscous fluid	
· to understand viscosity	ve must
consider the stress tense	headed for is
pressure, VIS	COSITY
relation $\{ \mathbf{\sigma} = -\mathbf{p}\mathbf{I} + 2\mathbf{y}\mathbf{D}\mathbf{u} \}$ between $\{ \mathbf{\sigma} = -\mathbf{p}\mathbf{I} + 2\mathbf{y}\mathbf{D}\mathbf{u} \}$ $3\pi^{3}$ nices M ewton's Brm (hypothesis)	about Sluids,
in modern notation	

picture of stress tensor: $= \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \end{pmatrix}$ Units: force (J3) 032 031 smal face a ます。 $\vec{\tau}_{i} = \begin{bmatrix} \sigma_{i} \\ \sigma_{21} \\ \sigma_{31} \end{bmatrix} \quad \begin{array}{c} g_{i} ves & for ce on this force: \\ \vec{\sigma}_{31} \\ \vec{F} = \sigma \hat{n}, A = \vec{\sigma}, A \end{array}$ $\hat{n}_1 = E_1 g g^T$

angular momentum is conserved stress tensor is symmetric $\mathbf{T} = \mathbf{T}^{\mathsf{T}}$ derivation in (Sor example) section 4.3 of E. Tadmor, R. Miller & R. Elliott (2012) Continuum Mechanics and Thermodynamics: From Fundamental Concepts to Governing Equations, Cambridge U. Press

strain rate tensor: given velocity field is, we have def: velocity $\nabla \vec{u} = \begin{pmatrix} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_1}{\partial x_2} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} \\ \frac{\partial u_2}{\partial x_2} & \frac{\partial u_2}{\partial x_3} \end{pmatrix} = \begin{bmatrix} \frac{\partial u_1}{\partial x_1} \\ \frac{\partial u_2}{\partial x_1} \\ \frac{\partial u_2}{\partial x_2} \\ \frac{\partial u_3}{\partial x_2} \\ \frac{\partial u_3}{\partial x_3} \end{bmatrix}$ gradrent Juz Juz Juz Juz Juz Juz $A_{c}=\frac{1}{2}(A+A^{T})$ $D\hat{u} = \pm (\nabla \hat{u} + \nabla \hat{u}^T) = (symmetric purt)$ 77 (22) 2 UZ $\left(\frac{1}{2}\left(\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}\right)\frac{1}{2}\right)$ rate + 243 Jensor 2×2 2 2×3 Same, Samo 2013

and the second	(and $\nabla \vec{u}$)						
rates	of a	small.	6106	of	Eluid		
	n sncompre	ssible d	Fluid	the	trace_	<u>of</u> D	<u>टि</u>
15.20	ero:	· · · · · · · · · ·	· · · · · · ·	· · · · ·	· · · · · · ·	· · · · · ·	· · · · ·
· ·	tr(Dt)=						· · · · · ·
· ·		<u>901</u> -	+ 202	+ 20	<u>\</u> 2 <3	· · · · · ·	· · · · · ·
		7. ū					

Newtoni	an fluid	hypothesis ((axiom):	
		scalar field		another
Scalm	220 024	so that		· · · · · · · · · · · · · · · · · · ·
	5 =	-pI+2	22 Di	
• p is i	The pressur	2		Ma constract
• 2 (3	is an ar	amic) J <u>is Cosity</u> about	how each	h small
	of Slu t is defi	id pushes or rmed	n fts neig	hbos

• because $tr(D\vec{u}) = \nabla \cdot \vec{u} = 0$, for an
in compressible fluid, & also gives a
formula for the pressure in terms
of stress components:
$O = tr(2 > D\overline{a}) = tr(\sigma + pI)$
$= tr(\sigma) + p tr(I) = tr(\sigma) + 3p$
$\int p = -\frac{1}{3} tr(\sigma) = -\frac{1}{3} (\sigma_{11} + \sigma_{22} + \sigma_{33})$
Cuhich is interpretable in physical terms

the derivation of Navier-Stokes:
· for an incompressible stuid,
$\nabla \cdot \hat{u} = 0$ mass conservation
$e\left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u}\right) = \nabla \cdot \sigma + e\vec{g}$ momentum cons
 substitute S = -pI + 22 Dû into momentum equatin:
$\rho\left(\frac{\partial\vec{u}}{\partial t}+\vec{u}\cdot\nabla\vec{u}\right)$
$= -\nabla p + \nabla \cdot (2 \nu D \vec{a}) + p \vec{g}$
• Optional simplification: if & construct then $\nabla \cdot (2 \times D \vec{u}) = \mathcal{V} \nabla^2 \vec{u}$

Navier-Stokes model for an incompressible, linearly-vis cous (Newtonian) Fluid: $\rho\left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u}\right) - \nabla \cdot (2 \nu D \vec{u}) + \nabla \rho = \rho \vec{g}$ $\nabla \cdot \hat{u} = 0 \qquad (if \ v \ constant) \\ = v \ \nabla^2 \hat{u}$ · This needs boundary and initial conditions!

Optional (but common) form when viscosity is constant
$\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} = \mu \nabla^2 \vec{u} - \frac{1}{\rho} \nabla \rho + \vec{g}$
$\nabla \cdot \vec{u} = 0$
where $\mu = \frac{v}{\rho}$ is kinematic viscosity
• often seen as a nonlinear, constrained,
and vector form of the heat equation
• \$1 million prize to show this model
is a good one, i.e. mathematically