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· elastic solids remember where they started
-

· viscous fluids forget --
· consider what would happen if you
turned off gravity in these situations

elastic beam Discousfluid block
-

Y TMi



Outline :
-

① reference configurations, and
deformations

,
in#3

② measuring deformation

③ strain

① stress, constitutive relations, and

hyperelasticity



· for elastic solids we are going
to compare a reference configuration-
a domain in 3D

,
with its deformed version

· the deformed version might be a

(time-independent) equilibrium or static shape,
or it could be the changing shape
of the elastic solid as it vibrates
(time - dependent)



R3

er)e-



def : O a domain in M3 is an open

set MCI3 which is bounded
,

Ciarletconnected
,
and has Lipschitz boundary p .

35

② a formation of 12 is a continuous,

and continuously-differentiable, map C :+I
for which def(NY(x) >0 for all xenZ

,
and

which is injective on 1 Carlet27
③We call 4(2) the deformed configuration



Why"det(x4)>0" ?

A it def(x4) < 0 then 4 reverses orientation,

which cannot be done by deformation.

if def(M4)=0 then deformation is to apoint.

~
why "injective on uh" and not ". ..

on
"

?

A Ultimatee ent TeX2 where

·
point

to allow Y e(

self-contact x
,x y(x)=Y(x)

Ear



formationgradient Frecket es

oripan

Carlets
E
2 common notafio

in elasticity

note :
d4 = Fax

texts
-



· often it is easier to describe

a deformation not by the final deformed

location 4(M)
,
but rather by the displacement

of the deformation
-

def: for a deformation C:- R3
the deplacement is U :I+ 13 given by

u(x) = y(x) - X

also written

4= id + u
=
+(x)=x givs
id:+IR



u ·P(X)

%⑮-X

L Xo



M = (unitcube)=
umRisisslanindirectconstant displacement



Ex2: q(x)= (xa,X,,-Xz)

is a reflection , with U(x) = 4()-X = 20, 0,-2x]
and De = (608) so def (e) = -

00 - 1

-not
a deformation !

Ex3 : Y(x) = (x0 , Xz)
-X)

is a retation by 900 about the Xo-axis,
with

u(x) = [0, X-Vz, X2+X], and De= (6%)
so det (M, 4) = +



Ex: 4(x) = (x, X, (- X,)X)
has D4 =(d) so det=

2 defNY() = 0 at X = (, 1
,U)Et

-notadeformationx,
,
Xe+&x)#5 :

has DY = (o 0 so def (44) = + 1 ;

this is a (volume-preserving) shear deformation



Ex6 : ((x) = ((-x ,)xo + x, (0.3(xz-2)+2),
2x1
,

(1-x)xz + X, (0 .3(xo-t) +t))
-

1-X/
-Xo -0.3(xz-z)+t -0.3X1has

my(x) = & O 2 O S
0.3x1 - x2+03(X+E 1 -XI

... I designed this as a stretch

Calong X
,
axis) and twist and compress



· so
,
is your brain not good enough

to visualize all this, from these

formulas ?

· me neither
-



· use our FE tools
,

"but Harry , you
have

a wd" (Mad-Eye Moody
↑

Firedrake & Paraview, just to visualize
-
-

these Examples 1- 6

·Specifically :

① mesh the reference configuratin , and show as wireframe

② use warp by Vector on the displacement u(X)
-

· see code deform
. py and Paravier saved

state file deform . pusm

D



formulasknow :

q(x) = x +u(x)

DY(x) = I + Du(x)

&How does a deformation change volume
?

A/xg(x)
-

is the local) ratio of volumes Bs(x) isaund
dete()hi ballwith goo

X radius
of a deformed neighborhood of X,

over

that of the neighborhood it self



Qw does a deformation changeLength
A Qx) = 44(x)z + o(1(z1)

So rector in A3

114(x+z) - q(x)()2 = (xy()z)T((y(x)z)+ 0(1)z(17)

= zT(yy()Tyy(x))z + o(l)z(4)
thus

,
for small distances (11211 small) in M, the

change in distance is

-(DY(x)T+((x))z (recall
zTz Izzz)



so "right Cauchy-Green3 strain tensor"Carlet((x) = Dy(x)TnY(x)
p .42

is a symmetric , positive
- definite matrix

which quantifies Kocal) changes in length

-(x)= (x- EX , X, Xz++x)Ex5cont. recall

( andis a shear deformation with DY = (0 def (4) =

but: ((x) =(i)( eig(C)
constant !- ans= 0.5

1 . 0
=( 2 : 0



Firdrake Exercise : modify deform . py to color--

the deformed configuration with the

scalar field IICCX)(I2 for each example
mu

just write ((X) as a TensorFunction Space
and color by magnitude in

Paraview



Theorem (Carlet Theorem 1 .8-1
, p. 44)

if C: + 13 is a deformation for which

((x) = x4()Txy(x) =I

SorallThenisgiddeforminase
an orthogonal matrix with Q

*

Q-I and

def(Q) =+1 (so@ is not a reflection) so that

Y(x)= a + QX

and DY()= Q



-Mostimportant idea of elasticity?) : 3 my beginner's
opsicion ...

rigid deformations are not the

subject of elasticity theory,
which instead assigns an "elastic

multipleenergy" cost to the stram deformations
associated to all the in different

other kinds of deformations contexts

-separationof concerns" relative to mechanics-

of rigid bodies



· since ((x) = xY(x)TXY() =I for
rigid deformations

, we subract-off an I

to get the strain relevant to elasticity

def :
E(x) = E(((x) - 1) YCiarlet p

. 49

is the rain tensor field
,
a.k . a . the

Green-StiVenant strain fensor

· EIX) is a symmetric matrix
,
since ((X) is

also



· elasticity theory, whether linearized or~
not
,
writes this strain fanson coming

in terms of the displacement soon !

Zakulationdkeysomurecall :
y(x)
= x+ u(x)

= (I+Du)T(I+Du) -I so
74=I+Du

-+ 2n +xuT+DuTy=
so

(E(u)= -(Du(x) + Xu(x)T + Xu(x)Tyu(x)



def : the linearizedm Ensor is

e(u) = k(Xu(x) + Xu(x)T),

-symmetricmati
(x)= (- Ex , X , Xe

++x)

is a volume-preserving shear deformation
with def(xY(*)=+ (but ((x) =XYTA) #I
... not a rigid deformation)
so : u(x) = y(x) - x = (- (2x, &X ,)



from u(x) = (- *2x, &X)
we have

Xu(x) =
0 O

(o(↳ o

thus

e(u) = &(Xu(x)+Xu(x)T)

C=[



· essentially my talk is done ;

I havepresented the kinematics
of elasticity ,. . e . the part of

elasticity theory which ismerely
?)

describing changes of shape/geometry
,

and not giving a "why" for those changes

· next are 4 slides on Dynamics, where
forces (i .e . stresses) appear



Sess,
and elastic constitutive relations : eCu()E33

-

· e(u) =t (Du+MuT) em
*
is the strain fensor

Clinearized)
, coming

from spatial derivatives of displacement

&
get : Hoke's law is a constitutive relation ciarlet

which computes the stresstensor 5/3X3 * p .

286

-Lame
from e(u) and constants X

,
M30 :

=(tre(u))I + zue(u)
parametersi

where trM= Mic is the matrix trace

· but we could replace e(u) -> E(n) , to
make

Hooke's law nonlinear, or choose an entirely
-different



Q. but what determines stress of strain,
-

noting they are related by a constitutive
relation like Hooke's law?

A boundary surface) forces , and body forces
~

nationsof equilibrium : Ciarlet p .

75

&ef : the equations of equilibrium for elastic
solids

are Egiven body forces R3

-Dot = f in R

Th =gl
given surfe &an 22 forces



perelasticity:
· many elasticity problems are actually mmmizatio

def : an elastic material is hoperelastic if Carlet
Chapter

the equations of equilibrium can be written as 4

min I(e) = JW(MY)dx-Sf .ydx--g.4 ds
I M 2 ar

for some scalar-valued energy function W : R*3-> I
EX: for Hooke's law we can minimize in terms of

displacementsa (here assuming g
=0) : seelinelas . pyE

quadra min (u) = S* x(treuueue()-fuE



~ways elasticity can be nonlinear: from Ciarlets
book

on finite elements p. 27

① instead of using the linearized strainfensor

e(u) = E (an+BuT), one returns to the
"full"

Stain tensorEuMaTu nation
② the constitutive relation could be nonlinear,

orequivalently) the energy function could be non-quadratic
⑤ instead of minimizing energy over all deformations

and/or displacements, we could minimize over a

convex subsets as in contact problems
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