Fluids & Solids	graduate semina	16 Jan. 2025
(MATH 692	, 1.0 credit, crn	35130)
• credit not re	guired!	. .
• if you want	1.0 credit,	expect to
give one tal	k	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Scope: basi	'c mathem	atics of
continuum	mo dels	("continuum mechanics),
for <i>Sluid</i> , so	ر رکھ، ا	· · · · · · · · · · · · · · · · · · ·
and their	numerical	approximations,
and apply	catins	ant
	· · · · · · · · · · · · · · ·	Thing you magement to
. .	(.e.)	with encourt to
· · · · · · · · · · · · · · · · · · ·	but	re lon continue de ling

bueler.g.thub.io/fluid-solid-seminar contains schedule of speakers, links to slides and codes my contribution: 2 lectures to start volunteers!!? email me with date	website at	
contains schedule of speakers, links to Slides and codes my contribution: 2 lectures to start Volunteers!!? email me with date	bueler. git hub	o. io/fluid-solid-seminar
slides and codes my contribution: 2 lectures to start volunteers!!? email me with date	contains schedule	of speakers, links to
my contribution: 2 lectures to start volunteers!!? email me with date	5 likes and codes	
volunteers!!? email me with date	my contribution:	2 lectures to start
	volunteers !!? e	email me with date
and title! yeah Aushn.	and title!	yeah fustin.
		\mathbf{U}

Continu	um mechanics through Navier-Stokes done fast!
plan:	notation & product rules 2 just calc 3 divergence theorem & integration by ports
	general (integral) conservation Z probably new to math and?
	conservation of mass actual 11 (1 momentum { actual 0 hysics
nexteek (Navier-Stokes for incompressible fluids

notation:	$X = (x_1, x_2, x_3) \in \mathbb{R}^3$ point
	$\vec{V} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \in \mathbb{R}^3$ vector \vec{Column}
	f: R ³ > R Scalar function
· · · · · · · · · · · · · · · ·	ü: ℝ³→ ℝ ³ vector-valued for
	$\overline{u} = \begin{bmatrix} u_1(x_{1,3}x_{2,3}x_{3}) \\ u_2(x_{1,3}x_{2,3}x_{3}) \\ u_3(x_{1,3}x_{2,3}x_{3}) \end{bmatrix}$ Component functions
casual nes	s assumptions: functions are defined on all of R ³
۷	functions are as differentiable as needed

derivatives notation partil desinte 1 **0** 1 JXi $\nabla f = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3} \right]$ gradient $\nabla \cdot \mathbf{u} = \frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \frac{\partial u_3}{\partial x_3}$ divergence dot moduct $\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$

product rules: « audin	nce input for scalar & vector functions, dot products, gradient & divergence
$\nabla(\vec{u}\cdot\vec{v}) = \cdots$	
$7(f_g) =$	\sim
$\nabla \cdot (f \vec{u}) =$	
$\frac{1}{3} \times (fg) =$	
$\frac{2nd den^{\gamma}}{\nabla \cdot (\nabla f)} = \nabla$	$\nabla^2 f = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \frac{\partial^2 f}{\partial x_3^3}$

 $\frac{\partial}{\partial x_i}(fg) = \frac{\partial f}{\partial x_i}g + f\frac{\partial g}{\partial x_i}$ hese $\nabla(fg) = f \nabla g + g \nabla f$ $\nabla \cdot (f\vec{u}) = \nabla f \cdot \vec{u} + f \nabla \cdot \vec{u}$ todan

also: bounded, connected divergence Theorem open set with smooth boundary SCR boundary of R 32: outward unit normal vector field along 252 dx volume element in S dS Stokes surface element andr $\frac{1}{10} \left(\begin{array}{c} S^{b}_{f'}(\omega) dx \\ = f(b) - f(\omega) \end{array} \right) \xrightarrow{vector field} \\ = f(b) - f(\omega) \xrightarrow{vec$ $\int \nabla \cdot \vec{u} dx = \int \vec{u} \cdot \hat{n} dS$ then: a a start a st

Why? frue ²	$S_{z}=C$	<u>center</u> at y= Sides 2h	(y_{1}, y_{2}, y_{3}) $\uparrow^{\times_{3}}$
			χ_1
note: 55 52	$7 \cdot \vec{u} dx = SS$ S^2 $3u_2$ internal:	$\frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \frac{\partial u_3}{\partial x_3} dx_1$	dx ₂ dx ₃
	$\frac{y_{1}+y_{2}}{x_{2}} dx_{1} dx_{2} dx_{3} = \int_{y_{1}-y_{1}-y_{1}-y_{2}}^{y_{1}+y_{2}-y_{2}-y_{2}-y_{1}-y_{2}-y_$	h y_{z+h} y_{z+h} y_{z+h} $\int \frac{\partial u_z}{\partial x_2} (x_1)$ h y_{z-h} y_{3-h}	$(x_2, x_3) dx_3 dx_2 dx_3$

do same for $\frac{\partial u_1}{\partial x_1}, \frac{\partial u_3}{\partial x_3}$ get	· ·	•
$\int \nabla \cdot \vec{u} dx = \int \vec{u} \cdot \hat{n} ds$		•
$C \qquad F_{\perp}^{\prime} U F_{\perp}^{\prime} U F_{\perp}^{2} U $		•
$= \int_{\infty} \vec{u} \cdot \hat{n} ds$	· ·	0
extend to general SZ by tiling	with	•
Cubes, noting cancellation over all	Inter or	•
faces	· ·	•

bad picture	
	• • • • • • • • • • • • • • • • • • • •
	<mark>.</mark>
	/
	· · · · · · · · · · · · · · · · · · ·

integration by parts	< a corollary, sometimes needed, a.k.o. Green's thin
$\int \nabla f \cdot \vec{u} dx = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	∫ fü.nds – ∫f⊽•üdx
proof: audince in prod.	$\vec{u} + f \nabla \cdot \vec{u}$
$S \neq \vec{u} \cdot \vec{n} dS = S \nabla \cdot (\neq \vec{u}) dx =$	S 2f. üdx + Sfr.üdx
9°5 9°5	E

recall	
<u>plan</u> :	 notation & product rules divergence theorem & integration by ports
	• general integral conservation and its derivatives form
	· conservation of mass
<pre></pre>	· Navièr-Stokes
· · · · · · · · · · · · · · · · · · ·	

def. Suppose S:[0,T]×R³→R, i.e. ^sgeneral conservation s(t,x), is a scalar <u>source</u> function, and $\vec{F}: [0,T] \times \mathbb{R}^3 \to \mathbb{R}^3$, i.e. $\vec{F}(t,x)$, is a vector-Valued <u>Elux</u> Sunction. We say Q(t,x) is conserved, where $\varphi: [o, T] \times \mathbb{R}^2 \to \mathbb{R}$, for given S, \vec{F} , if $\left[\frac{d}{dt}\left(\int_{S}\varphi\,dx\right) = -\int_{S}\vec{F}\cdot\hat{n}\,dS + \int_{S}S\,dx\right]$

q is conserved	means	we kn	ow how	the
`amount of q in S	ζ ^{''} , name	ly	 	
Sqd	*		· ·	· · · · · ·
changes in time	, based e	n knowin	how	
much leaves throng	h the bounda	m" (-S	F•ndS)	· · · · ·

derivative form	of (general) car	servatin	
· true over every	SCR3:	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · ·
d (5 4	$d_{x} = \int \vec{F} \cdot \vec{r}$	$ds + \int s$; dx
dt (s'	- J- 3	د ع	
· time derivative :	DC	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · ·
d (gdx)	$= \int_{\mathcal{R}} \frac{2q}{2t} dx$		· · · · · · · · · · · · · · · · · · ·
ot (Jr	to access to fly	x surface	integral:
· apply divergence	Theorem 10 13		
ς ≓.âds	$= (\nabla \cdot \vec{F} dx)$		
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · ·

• thus rewrite \otimes as	
$\int \left(\frac{\partial \varphi}{\partial t} + \nabla \cdot \vec{F} - S\right) dx = 0$	
since this is true for even	JSCR3 equation (PDE)
born of conservation:	in641 Cardr=0
$\boxed{\frac{\partial \varphi}{\partial t} + \nabla \cdot \vec{F}} = S$	J + ~s ~ Hs se =>
	5=0

mass	conservation (an	axiom) any cont	hinnow substance
· · · · · · · ·	$\varphi(t,x) = \rho(t,x)$	fluid, density,	
	nunit: ma	ss scalar	p:[QJ]×J →IR
 	$S(t_j x) = 0$	no mass creat	in
· · · · · · · · ·	ū (+,×)	velocity of	fluid,
	units: dist	me <u>vector</u> i	·[oj]×J2 -> R3
· · · · · · · · ·	$\vec{F}(t_{j}x) = \rho(t_{j}x)$	ū(t,x) mass	flux
	E units:		mæ

physicists a	assume:		
<u>d</u> ($S \rho d_{x} = -$	- [pū.nds]	+ 0
J.L (3. (SV	(Srsdx=0)
for every (fixed) R	< R ³	
in words:	no mass	is actually a	mented
or lost, .	so the cl	lange in mas	5 1 h a
given volu	me occurs	only by moving	mass
across th	e boundary	of the volume	2

•mass	conservation in PDE 1	form:
	$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0$	
<u>cons</u>	tant density case: $F p(t, x) = \rho_0 > 0$ is constant	nt then
	$O + \nabla \cdot (c \cdot \vec{u}) = 0$	
	$\nabla \cdot \vec{u} = 0$	

the	Eulorian View
	• in this (general or mass) consorration
· · · ·	view, the "control volume" SCR3
· · · ·	is fixed and does not move
· · ·	• This view is taken when you
· · · ·	fix your coordinates (or numerical
· · · ·	mesh) to the laboratory
· · · · ·	· versus: Lagrangion view where R=R(2) moves

def. Suppose $\vec{S}: [0, T] \times \mathbb{R}^3 \to \mathbb{R}^3$ is a vector source function, and F: [0,7] × R³ -> (3×3 matrices) is a <u>matrix-valued</u> function. <u>vector-valued</u>! Q(t,x) is conserved, where $\vec{\varphi}: [o, \vec{\eta} \times \vec{R}^2 \to \vec{R}]$ if $\frac{d}{dt}\left(\int_{S} \frac{d}{dt} dx\right) = -\int_{S} F \hat{n} dS + \int_{S} \frac{d}{dx} dx$ (audience: Consistent?)

and CANA and A TIM <u>C and A A</u> A
tum density
al" stress in fluid Qû
entum flux 2 as:
source: Erm gravitz

Conservation of momentum $\left \frac{\partial}{\partial t} \left(\int_{S} \vec{\varphi} dx \right) \right =$	- SF nds + S s dx
$\frac{d}{dt}\left(\sum_{r}\rho\vec{u}dx\right) = -\int_{\sigma_{r}}(\rho\vec{u}\vec{u}-\sigma)\hat{n}ds$	S + Spādx
inertia, as a momentum Flux	weight density,
<u>stress density within</u> <u>material</u> , a momentum flux	nomentum Sourre

Component-wise
if you work one component at a time then
This is clearer: $\varphi = \rho u$, $f = \rho u u = 0$, $S = \rho 0$ $\varphi = \rho u$; $F = \rho u$; $u = \overline{\sigma}$; $\varphi = \rho u$; $\varphi = \rho u$; $u = \overline{\sigma}$; $\varphi = \rho u$; $\varphi = \rho u$; $u = \overline{\sigma}$; $\varphi = \rho u$; $\varphi = \rho u$; $u = \overline{\sigma}$; $\varphi = \rho u$; $\varphi = \rho u$; $u = \overline{\sigma}$; $\varphi = \rho u$; $\varphi = \varphi = \rho u$; $\varphi = \varphi = \rho u$; $\varphi = \varphi = \rho u$; $\varphi = \rho u$;
thus: $ \frac{d}{dt}\left(\sum_{s}pu_{i}dx\right)^{\underline{m}} - \int_{\partial P}pu_{i}\vec{u}\cdot\hat{n}dS + \int_{\partial T}\vec{\sigma_{i}}\cdot\hat{n}dS $
$+ S_{r} \rho_{ji} dx$

component-wise PDE Grm
$\frac{\partial}{\partial t}(\rho u_i) + \nabla \cdot (\rho u_i \vec{u}) = \nabla \cdot \vec{\sigma}_i + \rho g_i$
expand by product rules:
$\frac{\partial \rho}{\partial t} u_i + \rho \frac{\partial u_i}{\partial t} + \nabla u_i \cdot (\rho \vec{a}) + u_i \nabla \cdot (\rho \vec{a})$
$= \nabla \cdot \sigma_{i} + \rho_{i} \qquad \qquad$
$ \left(\frac{\partial u_i}{\partial t} + \vec{u} \cdot \nabla u_i\right) = \nabla \cdot \vec{\sigma}_i + \rho g_i $

back to full vector form: $\mathcal{C}\left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u}\right) = \nabla \cdot \boldsymbol{\sigma} + \mathcal{C}\vec{g}$

general model for fluids	p = density $\mathbf{R} = velocity$
mass conservation: $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0$	$p\vec{g} = body force$ $\sigma = internal stresses$
momentum (and mass) conservo	tion:
$\mathcal{C}\left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u}\right) = \nabla$	$p \cdot \sigma + \rho \tilde{g}$
· · · · · · · · · · · · · · · · · · ·	

<u>Next</u> :		
@ Navier - and viscous	Stokes for Stuids	- in compressible
Teference displacement	configuration," stram, veloc	and ity
3 linear elas	ficity	