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assumptions

all examples here are for 2D domains Ω ⊂ R2

notation: u(t , x , y) is velocity and p(t , x , y) is pressure
density ρ > 0 is constant
◦ fluid is incompressible

dynamic viscosity µ > 0 is constant
◦ constitutive relation: σ = −pI + 2µDu

body force set to zero: f = 0

units:

[u] = m s−1

[p] = N m−2

[ρ] = kg m−3

[µ] = kg m−1 s−1
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the Navier-Stokes model

the time-dependent, incompressible, constant-viscosity Navier-Stokes
equations are:

ρ (ut + u · ∇u) = µ∇2u −∇p conservation of momentum
∇ · u = 0 incompressibility (c. of mass)
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potential flow past a cylinder

recall from 2 weeks ago that Nick provided formula for the potential flow
past a cylinder
in a potential flow the vorticity is zero: ω = ∇× u = 0
incompressible potential flows satisfy:

∇× u = 0 conservation of momentum
∇ · u = 0 incompressibility (c. of mass)

zero curl (∇× u = 0) so there exists a potential u = ∇ϕ

. . . and by incompressibility ϕ is harmonic: ∇2ϕ = 0
assume far field velocity u = (U0,0)
assume non-penetration and free slip on circle r = a
get by separation of variables:

ϕ(r , θ) = U0

(
r +

a2

r

)
cos(θ)
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potential flow past a cylinder

potential:

ϕ(r , θ) = U0

(
r +

a2

r

)
cos θ

velocity u = ∇ϕ:

u(r , θ) = U0

(
1 −

a2

r2

)
cos θ r̂−U0

(
1 +

a2

r2

)
sin θ θ̂

however, the boundary condition
along the cylinder, non-penetration
and free slip, is not realistic for
a viscous fluid
in fact there is substantial
vorticity along the cylinder
and flow separation . . .
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plan for today

use Firedrake to solve Navier-Stokes (NS) in two situations:
1 lid-driven cavity on a square ← DEMO NOW!
2 flow around a cylinder on a custom mesh

TO DO today:
◦ the Reynolds scaling argument, to reduce # of parameters
◦ implicit discretization of Navier-Stokes (in time)
◦ weak form
◦ practical Firedrake coding
◦ visualization with Paraview
◦ meshing with Gmsh
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Reynolds number

recall NS equations:

ρ (ut + u · ∇u) = µ∇2u −∇p, ∇ · u = 0

a particular simulation sets several scales:
ρ density
µ dynamic viscosity
L (how long and wide is the domain?)
V (how fast is the fluid, e.g. at boundaries?)

one can change variables in the NS model using these substitutions:

u = V ũ, p = ρV 2p̃, ∇ =
1
L
∇̃,

∂

∂t
=

V
L

∂

∂ t̃

◦ the new variables have tildes: u, p, x , t → ũ, p̃, x̃ , t̃
◦ the new variables are dimensionless
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Reynolds number

one rewrites the NS equations using the tilde variables . . .
drop the tildes:

ut + u · ∇u =
µ

ρVL
∇2u −∇p, ∇ · u = 0

note that the coefficient is dimensionless:

[µ]

[ρ][V ][L]
=

(kg m−1 s−1)

(kg m−3)(m s−1)(m)
= 1

Definition
the Reynold’s number is the dimensionless ratio

Re =
ρVL
µ

Ed Bueler (MATH 692 Fluids & Solids Seminar) Navier-Stokes solved with finite elements Spring 2025 8 / 17



Reynolds number

dimensionless NS equations used from now on (Re = ρVL/µ > 0):

ut + u · ∇u =
1

Re
∇2u −∇p

∇ · u = 0

if Re is small then viscosity is dominant
if Re is large then inertia is dominant
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implicit time steps

discretization in time typically uses finite differences
key idea: there is no time derivative in the incompressiblity equation!
◦ thus NS equations are really a “differential-algebraic” system in time, and

infinitely stiff, thus implicitness is a good idea

I will use O(∆t) backward (implicit) Euler method, highly stable:

ut ≈
un − un−1

∆t

suppose un−1 is known from previous time step, or initial condition
unknowns are un and pn:

un − un−1

∆t
+ un · ∇un =

1
Re

∇2un −∇pn

∇ · un = 0

◦ these equations are continuous in space
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implicit time steps

cleaner notation u = un, p = pn, uold = un−1

also clear ∆t from denominator . . . get:

implicit-step Navier-Stokes equations

u − uold +∆t
(

u · ∇u − 1
Re

∇2u +∇p
)

= 0

∇ · u = 0

we will solve these equations for u,p at every time step, over the domain
Ω, using the boundary conditions, and using uold from the previous time
step or the initial conditions
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weak form of NS equations

above equations are the “strong form”, in which u must have second
derivatives and p must have first derivatives
this is not necessary, and in finite element (FE) method not desirable
the weak form is built by multiplying by test functions and integrating
multiply 1st equation by v and 2nd q, and integrate:∫

Ω

(u− uold) · v dx +∆t
∫
Ω

(
u · ∇u− 1

Re
∇2u +∇p

)
· v dx = 0∫

Ω

(∇ · u)q dx = 0

integrate by parts to remove 2nd deriv from u and 1st deriv from p:
∫
Ω

(
− 1

Re∇
2u + ∇p

)
· v dx =

∫
Ω

∇ ·
[
− 1

Re (∇u)v + pv
]

dx −
∫
Ω

− 1
Re∇u : ∇v + p(∇ · v) dx

=

∫
Ω

1
Re∇u : ∇v − p(∇ · v) dx +

∫
∂Ω

(
pI − 1

Re∇u
)

n̂ · v dS︸ ︷︷ ︸
boundary integral

Ed Bueler (MATH 692 Fluids & Solids Seminar) Navier-Stokes solved with finite elements Spring 2025 12 / 17



boundary conditions

two boundary conditions considered here, on separate parts of boundary
stress free (Neumann): (

pI − 1
Re∇u

)
n̂ = 0

◦ test functions v unrestricted on this part of boundary

given velocity (Dirichlet):
v given

◦ test functions satisfy v = 0 on this part of boundary

assuming one or the other applies everywhere on boundary, then the
boundary integral on last slide is zero
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weak form

implicit-step Navier-Stokes equations in weak form

∫
Ω

(u − uold) · v dx +∆t
∫
Ω

(
1

Re
∇u : ∇v + (u · ∇u) · v − p∇ · v

)
dx = 0∫

Ω

(∇ · u)q dx = 0

for all test velocities v, with v = 0 on Dirichlet boundary, and for all test
pressures q

the problem is nonlinear in u
but the weak form is linear in v and q
note: no derivatives on p,q, and only first derivatives on u,v
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weak form in Firedrake

∫
Ω

(u − uold) · v dx +∆t
∫
Ω

(
1

Re
∇u : ∇v + (u · ∇u) · v − p∇ · v

)
dx = 0∫

Ω

(∇ · u)q dx = 0

becomes

F = dot(u - uold, v) * dx
+ dt * (1.0 / Re) * inner(grad(u), grad(v)) * dx
+ dt * dot(grad(u) * u, v) * dx
- dt * p * div(v) * dx
- div(u) * q * dx
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solver in Firedrake: lid-driven cavity

mesh = UnitSquareMesh(32, 32) # Firedrake utility mesh

V = VectorFunctionSpace(mesh, "CG", 2) # P2 x P1 finite elements
W = FunctionSpace(mesh, "CG", 1)
Z = V * W
up = Function(Z)

u, p = split(up)
v, q = TestFunctions(Z)
F = ... # previous slide

x, y = SpatialCoordinate(mesh)
bcs = [DirichletBC(Z.sub(0), as_vector([4 * x * (1-x), 0.0]), (4,)),

DirichletBC(Z.sub(0), Constant((0.0, 0.0)), (1, 2)),]

t = 0.0
uold.interpolate(as_vector([0.0, 0.0])) # initial velocity zero
u, p = up.subfunctions
spar = { ... } # for Newton solver
for j in range(N):

solve(F == 0, up, bcs=bcs, solver_parameters=spar)
t += dt
uold.interpolate(u)
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demonstrations

Python codes are in py/bueler/ directory of repository
github.com/bueler/fluid-solid-seminar

you will need to get Firedrake installed to use these

1 demo: lid-driven cavity on a square
◦ look at navierstokes.py and cavity.py
◦ visualize with Paraview

2 demo: flow around a cylinder on a custom mesh
◦ build mesh using Gmsh, using geometry-description file cylinder.geo
◦ look at navierstokes.py and cylinder.py
◦ visualize with Paraview
◦ play with Reynold’s number
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https://github.com/bueler/fluid-solid-seminar
https://www.firedrakeproject.org/
https://github.com/bueler/fluid-solid-seminar/blob/main/py/bueler/navierstokes.py
https://github.com/bueler/fluid-solid-seminar/blob/main/py/bueler/cavity.py
https://www.paraview.org/
http://gmsh.info/
https://github.com/bueler/fluid-solid-seminar/blob/main/py/bueler/cylinder.geo
https://github.com/bueler/fluid-solid-seminar/blob/main/py/bueler/navierstokes.py
https://github.com/bueler/fluid-solid-seminar/blob/main/py/bueler/cylinder.py
https://www.paraview.org/

