Conservation and DG	4 April 2024
• Poisson strong form again: $-\nabla^2 u \stackrel{\text{\tiny eff}}{=} f$ on \mathcal{N}	~discartinuous Galerkin
• recall $\nabla^2 u = \nabla \cdot \nabla u$	
integrate @ over any SCR:	J R2 R2
$ \begin{aligned} & \int -\nabla \cdot \nabla u &= \int f \\ & S & S \end{aligned} $	
$- \sum_{\partial S} \nabla u \cdot \hat{n} = \int_{S} F$	

muttiply & J	y any v a	nd integrate	over 52:	
	$\int_{\mathcal{N}} -(\nabla^2 u)$	$v = \int_{v} f v$	assume	$u = 0$ on $\int u$
thm	SQU·D	v - S v Qu.	$\hat{n} = \int_{n} f_{n}$	/ ②
idea: exa and 3	sor all v	hin satisfies	both O	(for all S)
Q. Which of a	n do we numeric	want to al scheme?	use as t	be basis

a convenient	Poisson problem:	
	(S	we have u=0
on F _N we have	$-\nabla^2 u$	ε= f
$\nabla u \cdot \hat{n} = c$	3n	
	$\partial \mathcal{S} = \int_{D}^{n} U$	7 ,

Summary: st	rong form
	$-\nabla^2 u = f$
· · · · · · · · · · · · · · · · · · ·	
	$\frac{3}{4}$
	2
	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$
Conservation over ce	lls weak for over S2
$-\int \nabla u \cdot \hat{n} = \int f$	$\int \nabla u \cdot \nabla v - \int v q_{\mu} = \int F v$
≥KK	い い い い い い い い い い い

element-wise	strong form	
weak form:	$-\nabla^2 u = f$	interme over one
elemon	t-wise weak form	element K
• • • • • • • • • • • • • • • • • • •	$S_{\nabla u} \cdot \nabla v - S_{v} \nabla u \cdot \hat{n}$	$=\int_{\mathbf{k}}\mathbf{f}\mathbf{v}$
take V=	= on K a e	over elements nd cance/ along interior dges ("facet")
Conservation or	er cells weak for	m over <u>S</u>
$-\int \nabla u \cdot \hat{n} = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	f K JQU·S	$v - Svg_{v} = Sfv$

re cancelling in adjacont cells: $let S = K_1 U K_2$ K, n. k. $S \nabla u \cdot \nabla v - S v \nabla u \cdot \hat{n} = S f_v Z add and use continuits of \nabla u$ $K_i = -\hat{n}_2$
$$\begin{split} S \nabla u \cdot \nabla v - S v \nabla u \cdot \hat{n} &= S f_v \\ K_2 & \Rightarrow K_2 \\ \end{split}$$
 $=\int fv$

def: a	numerical	scheme	for f	olsion a	quarto	· · · · · ·
t's conse	rrative i	f there	is an	appro	ximate	
	$\sigma_{k}^{2} \sim - \nabla$	7 u _n				· · · · · ·
for numer	rical solution	ion Uh,	with σ_h	single	-valued	gver
all edges	in Tho S	o that	· · · · · · · · · ·	· · · · · · · · ·	· · · · · · ·	· · · · · ·
· ·	S Jh. n	= { } f		
over e	very clam	ent (cel	りんド	n Th	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	· · · · · ·

lemma: (a) a convergen	t FE scheme based on
the element-wise weak	form
$S \nabla u_{i} \nabla v_{i} + S v_{i}$	$J_{h}\sigma_{h}\cdot n = \int_{K} fv_{h}$
is conservative if Vh =	11 is an allowed
test Sunction	Tcharacteristic Sunction on K
(b) if an FE schem	e is conservative then
$(c) \int \nabla_{\Gamma} \cdot \hat{n} = \int g_{N}$	+ S.f. Z numerically
	52) Checkable
	<u>GIOBAR</u> Conservation

demo I will dem	lo 3 Poisson solvers
poisson_pCG.pg	our usual "primal" CG1 (precewise -linear) FE scheme, with check on @ at end
poisson_pDG.py	"primal" DGO FE scheme and I don't know how to check ©
poisson - mDG.py	"mixed" DGO FE scheme, with check on (G at end

· · · · · ·		
· · · · · ·	primal	means we solve for uh
· · · · · · · · · · · · · · · · · · ·		
· · · · · ·	mixed	means we solve our uh
		and a stariable The Mich
 · · · · · · · · · · · · · · · · · · ·	. .	and a variable T_h which approximates $T_h = -\nabla u_h$

test problem solved by all 3 codes: $\int \sigma_h \cdot \hat{n}$ GN L. U =0 flux out

primal DGO:
• if faces of cells are perpendicular to
lines between Cell centers
Then eiz
$\int \nabla_{n} \nabla u_{n} \cdot \hat{n} + \int \nabla_{n} \nabla u_{n} \cdot \hat{n}$ e c 2k e c 2k
$\cong \int_{e_{12}} \frac{u_{h}(c_{1}) - u_{h}(c_{2})}{\Delta} (v_{h}(c_{1}) - v_{h}(c_{2}))$
"two-point flux approximation

· "DGO" means up and up are constant
on each element
· for DGO, JUn=0 and JU=0 in element, so
element-wise weak form is just
$- \sum_{n} \nabla_{n} \nabla_{n} \cdot \hat{n} = \int_{K} f v_{h}$
• summing over all elements and using result on previous slide gives this expression:
F= (jump(u) / Delta) * jump(v) * dS - f * v*dx means integel our intenin edges

· This is essentially a finite volume method irritating fact 1: Dirichlet Conditions in this method must be imposed weakly (see code) irritating Sad 2: I cannot figure out a good way to do a global conservation check: not clear $(C) \left(\int \sigma_{h} \cdot \hat{n} \right) = \int g_{N} + \int f$ how to do To TN S2 this intopal

• agaiv	un and v	h are c	onstant	on each	ele
Star	t from	strong	form .	$-\nabla^2 u = 1$	
bnt	write	$rac{1}{2}$	<u>system</u>	ar	
· · · · · · · · ·	Q•Q=	- -	$\sigma = (\sigma_{i})$	oz) vector	
· · · · · · · · ·		· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	e che	Lo ch

$\int \nabla \cdot \omega + \int \nabla u \cdot \omega = 0$	
$\int (\nabla \cdot \sigma) v = \int d$	Ξ ν
• integrate by posts to more ?	off of u:
$\int \sigma \cdot \omega - \int u(\nabla \cdot \omega) + \int u(\nabla \cdot \omega)$	$u\omega\cdot\hat{n}=0$
5 ∑(२ •5) ∨	=Stv
• since u=0 on M, that pm	+ of Z Dirichlet
bounday integral disappears	S becmes natural!

• to enforce $\nabla u \cdot n = -\sigma \cdot n = g_N$	on Γ_N requires
a Dirichlet condition on σ :	2 Neumann becomes
$ \begin{aligned} \nabla \cdot n &= g_N \xi & on \prod_N \\ \omega \cdot n &= \delta \end{aligned} $) essentral!
• <u>Final mixed weak form</u> :	· · · · · · · · · · · · · · · · · · ·
$\int_{\Sigma} \nabla \cdot \omega - \int_{\Sigma} u(\nabla \cdot \omega) = 0$	$\langle m \rangle$
$\int_{\Sigma} (\nabla \cdot \sigma) \vee = \int_{\Sigma} f \vee$	S
F = dot (sigma, omega) *dx - u* div	(omega) * dx \
+ $div(sigma) \times v \times dx - f \times v \times$	fdx

· solving (m) accurately/stable	y requires
careful choice of elements:	
$RT_{k} \times DG_{k-1}$ G_{0}, ω here G_{0}, ω here $BDM_{k} \times DG_{k}$	Sor triangular e le monts
• see literature and "Periodic of the Finite Elements"	Table

results: Try
· poisson-pCG.py is as expected, but when much
we measure global conservation (C), it is
Off by much more than rounding ever
· poisson_pDG.py seems to work, but
no apparent way to check @
· pousson-mDG.py works well and
global conservation checks ont:
Cholds to within rounding emor

references	Mixed formulation of Posson
· firedrake proj	ect. org/demos/poisson-mixed.py
explains.	Low poisson - mDG. py
Works	· · · · · · · · · · · · · · · · · · ·
• github.com	/tlroy/thermal porous
explains l	Now poisson-pDG.py
Works	see intro/Into.pdf

Further reading:	
• Hu m P)	shes et al (2000). The continuous Galerkin thod is locally conservative. J. Comput. 195. 163(2), 467-488
• Pe	riodic Table of the Finite Elements,
A	t z.umn.edu/femtable