Solve	time - dependent	Leat equation 29 Feb 2024
F~.		interior source
		model of heat
Su	$\mathcal{U}_{t} = \nabla^{2} \mathcal{U} + \mathcal{F}$	Conduction in u=0 a plate, with
Dn	\mathcal{P}_{-}	heat flowing in on left side
boundary	U=0	$\rightarrow \times$
í.	itial condition: Ult,	<i>o</i>)=0

what this example will demonstrate/derive: 1) weak forms for explicit (forward Euler) and implicit (backward Euler) time stopping ¿ basic how-to for time-stepping 3 that explicit stepping has stability issues! I how the mass matrix and stiffness matrix are behind the scenes

forward Euler, and its weak som	for simplicity: assume			
$u_t = \nabla^2 u + \delta$	f=f(x,y), g=gg do not depend on t			
• discretize time tE[0,T]:	st $z > t$ $1 + t > t$			
$t_n = n \Delta t$	trtz T			
• finite-difference for $W_1 = \frac{\partial U}{\partial t}$:				
$\frac{u^n - u^{n-1}}{\Delta t} = \nabla^2 u^{n-1} t$	f			
for $u^{n}(x,y) \approx u(t_{n},x,y)$				

· clear denominators,	multiply by Vs	and integrate:
S u^v = S	$u^{n-1}v + at \int (\nabla^2 u)$	$n^{-1}) \vee + \Delta t \int v$
• assume u", u", v	are in	
$H'_{D}(\Sigma) = \xi$	$w \in H'(sz) : W _{r_0}$	= 05 1 5 1=0
· apply product nu	ke and div. th	$m: \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1$
$\int_{\Sigma} u^n v = \int_{\Sigma} u^{n-1} v +$	st(SvQu ⁿ⁻¹ nds	$- S_{r} \nabla u^{r} \cdot \nabla v$
· · · · · · · · · · · · · · · · · · ·	+ st Szfv	

• apply b.c.s to get weak form:	Firedrake!
$F := \int_{\Sigma} u^n v - \int_{\Sigma} u^{n-1} v + \Delta t \int_{\Sigma} \nabla u^{n-1} v $) py/29feb/ stepper.pg
$-\Delta t \int_{2} fv - \Delta t \int_{1} gv$	= 0
• at each time step we will solve this d starting with known $u^{\circ} = u(0, x, y)$, the initial condition	sr uz

backward Euler, and its weak form
$U_{t} = \nabla^2 u + \xi$
· finite-difference Ut:hat's changed ?
$\frac{u^n - u^{n-1}}{\Delta t} = \nabla^2 u^n + f \qquad J ersus forward$
$\iff u^n = u^{n-1} + \Delta t \nabla^2 u^n + \Delta t f$
• multiply by v and integrate:
$\int_{\mathcal{X}} u^n v = \int_{\mathcal{X}} u^{n-1} v + \Delta t \int_{\mathcal{X}} (\nabla^2 u^n) v + \Delta t \int_{\mathcal{X}} \int_{\mathcal{X}} \nabla^2 u^n v + \Delta t \int_{\mathcal{X}} \nabla u^n v + \Delta$

• assume u", u", v are in H'(2), apply rule and div. thm:	product
$\begin{aligned} \int_{\Sigma} u^{n} v &= \int_{\Sigma} u^{n-1} v + st \left(\int_{\partial \Sigma} v \nabla u^{n} \cdot \hat{n} ds \right) \\ r &= r \\ + st \\ \int_{\Sigma} f v \end{aligned}$	- S 7u ⁿ . 7v) s
· apply b.c.s to get final weak form!	Compore F
$F := \sum_{n} u^n v - \sum_{n} u^{n-1} v + at \sum_{n} \nabla u^n \cdot \nabla v$	5
+ st $S_{r} f v + st S_{r} g v$	=0

demo code	· · · · · · · · · · · · · · · · · · ·
py/29feb/stepper.py	00
· produces Paravién Siles	demo!
() result.pud (stype u°, u', Suitable for	su ⁿ animatin)
& sources. put (f,g for Vis	natizatin)
• play with M= (spatial re (# of time steps), st = (time step	solutin) N= dumpin)

Under th	e hood Why unstable?
• assu	me sources fig are zero for simplicity
· explu	at weak form:
Fe	$= \int u^n v - \int u^{n-1} v + \Delta t \int \nabla u^{n-1} \cdot \nabla v$
• re call	4; is the hat function at node (xi, yi)
des: Mij	= Srtit; is the mass matrix
Aن	= Sray: • Days is the shiftness matrix

· Fired	lake's assembly process turns $F^e == 0$
into	$M\vec{u}^{-} - M\vec{u}^{-1} + \Delta t A\vec{u}^{-1} \stackrel{\text{\tiny eff}}{=} 0$
when	e ti e R? g=(# g nodes in mesh)
of co	morse: $\vec{u}^n \cong u(t_n, x, y)$ new values
	$\overline{\mathcal{U}}^{n-1} \cong \mathcal{U}(t_{n-1}, x, y)$ old values
• 50	solue (F==0, uneus) in explicit
Case	solves linear system & for in

· so forward / backward Euler become matrix iterations: $F = 0 \implies Ma^n - Ma^{n-1} + st Aa^{n-1} = 0$ \iff $\vec{u}^n = (I - \Delta t M^{-1} A) \vec{u}^n$ $= Q^{\boldsymbol{\varepsilon}}$ $F'=0 \implies M\vec{u}^n - M\vec{u}^{n-1} + stA\vec{u}^n = 0$ $\Rightarrow \vec{u}^{n} = (I + \Delta t M' A)^{-} \vec{u}^{n}$ $=Q^{L}$

lemma: the	e iteration	w = 6	2 w ⁿ⁻¹ will	l
Cause some exponential	e mode (so by If and	ome vector only if	there is an e	oplode Zigenvolup
of Q wi	th magnitu	de erceed	l,úg 1:	
(w [°] can explude explude exponen	willy.		ere is $\dot{x} \neq 0$ $Q = \lambda s$ $d = \lambda s$ $d = \lambda s$	so that
· · · · · · · · · · · · · · · · · · ·		. .		

· this explains, quantitatively, our instability: (explicit time-stopping is observed to be unstable) $\Rightarrow (Q^e has |\lambda| > 1)$ $\implies M'A \overrightarrow{x} = \left(\frac{1-\lambda}{5t}\right) \overrightarrow{x} \qquad 2 \quad |\lambda| > 1$ $\stackrel{(=)}{\longrightarrow} M^{-1}A\vec{x} = \alpha\vec{x} \qquad \& ||-\alpha \Delta t|>|$

 $\implies M^{-1}A = \alpha \neq 8 \quad |-\alpha \Delta t < -1$ uses fact that M'A is similar to an SPD matrix, so a is real ⇐ M'A has an eigenvalue & so that $d > 2/\Delta t$ · note eigenvalues of MTA are entirely determined by the spatial mesh

• by	CM	frast		· · · · · ·				
· · · · · · · · · · ·	eign	enval	wes	f	Q	= (I	+ st n	ĨA)
	are	all	less	than	n 1			
• So:	imp(îcit	stepp	ing	ی کا	thble	for any	1
St	>0	· · · · · · ·		· · · · · ·		· · · · · · · ·		
· · · · · · · · · · · ·	· · · · · ·	· · · · · · · ·	· · · · · ·	· · · · · ·	· · · · · · ·	· · · · · · · · ·		· · · · · · · · · ·
· · · · · · · · · · ·	· · · · · ·	· · · · · · · ·	· · · · · ·	· · · · · ·	· · · · · · ·			· · · · · · · · · ·