Solve time-dependent heat equation

model of heat conduction in a plate, with heat flowing in on left side
initial condition: $U(t, 0)=0$
what this example will demonstiate/derive:
(1) weak forms for explicit (forward Euler) and implicit (backward Enter) time stepping
(2) basic how-to for time-stepping
(3) That explicit stepping has stability issues!
(4) how the mass matrix and stiffness matrix are behind the scenes
forward Enter, and its weak form
for simplicity:
assume

$$
u_{t}=\nabla^{2} u+5
$$

$$
f=f(x, y), g=g(y)
$$

do not depend on t

- discretize time $t \in[0, T]$:

$$
t_{n}=n \Delta t
$$

- finite-difference for $u_{t}=\frac{\partial u}{\partial t}$:

$$
\frac{u^{n}-u^{n-1}}{\Delta t}=\nabla^{2} u^{n-1}+f
$$

for $\quad u^{n}(x, y) \approx u\left(t_{n}, x, y\right)$

- clear denominators, multiply by $V_{\mathcal{\prime}}$ and integrate:

$$
\int_{\Omega} u^{n} v=\int_{\Omega} u^{n-1} v+\Delta t \int_{\Omega}\left(\nabla^{2} u^{n-1}\right) v+\Delta t \int_{\Omega} f v
$$

- assume u^{n}, u^{n-1}, v are in

$$
H_{D}^{\prime}(\Omega)=\left\{w \in H^{\prime}(\Omega):\left.w\right|_{\Gamma_{D}}=0\right\}
$$

- apply product rule and div. tho:

$$
\begin{aligned}
\int_{\Omega} u^{n} v=\int_{\Omega} u^{n-1} v & +\Delta t\left(\int_{\partial \Omega} v \nabla u^{n-1} \cdot n d s-\int_{\Omega} \nabla u^{n-1} \cdot \nabla v\right) \\
& +\Delta t \int_{\Omega} f v
\end{aligned}
$$

- apply b.c.s to get weakform:

$$
\begin{aligned}
F:=\int_{\Omega} u^{n} v & -\int_{\Omega} u^{n-1} v+\Delta t \int_{\Omega} \nabla u^{n-1} \cdot \nabla v \\
& -\Delta t \int_{\Omega} f v-\Delta t \int_{\Gamma_{N}} g v=0
\end{aligned}
$$

- at each time step we will solve this for u^{n}, starting with known $u^{0}=u(0, x, y)$, the initial condition
backward Euler, and its weak form

$$
u_{t}=\nabla^{2} u+f
$$

- finite-difference u_{t} : what's changed

$$
\begin{aligned}
& \frac{u^{n}-u^{n-1}}{\Delta t}=\nabla^{2} u^{n}+f \\
& \Leftrightarrow u^{n}=u^{n-1}+\Delta t \nabla^{2} u^{n}+\Delta t f
\end{aligned}
$$

- multiply by v and in tegats:

$$
\int_{\Omega} u^{n} v=\int_{\Omega} u^{n-1} v+\Delta t \int_{\Omega}\left(\nabla^{2} u^{n}\right) v+\Delta t \int_{\Omega} f v
$$

- assume u^{n}, u^{n-1}, v are in $H_{0}^{\prime}(\Omega)$, apply product rule and div. hm:

$$
\begin{aligned}
\int_{\Omega} u^{n} v=\int_{\Omega} u^{n-1} v & +\Delta t\left(\int_{\partial \Omega} v \nabla u^{n} \cdot \hat{n} d s-\int_{\Omega} \nabla u^{n} \cdot \nabla v\right) \\
& +\Delta t \int_{\Omega} f v
\end{aligned}
$$

- apply b.c.s to get final weak form:

$$
\begin{aligned}
F^{i}:=\int_{\Omega} u^{n} v & \left.-\int_{\Omega} u^{n-1} v+\Delta t \int_{\Omega} \nabla u^{n} \cdot \nabla v\right\}^{\text {comp }} \\
& +\Delta t \int_{\Omega} f v+\Delta t \int_{\Gamma_{N}} g v=0
\end{aligned}
$$

demo code

$$
\text { py } / 29 \text { feb/stepper.py }
$$

- produces Paravién files
(1) result.pud Cstyes $u_{0}^{0}, u^{\prime}, \ldots, u^{N}$ sultable for animatin)
(2) sources.pud (f, g dor visualization)
- play with $m=$ (spatine resolutin), $N=$ (\# of tivesteps), $\Delta t=$ (time step dunatin)
under the hood... why unstable?
- assume sources fig are zero for simpliaty
- explicit weak form:

$$
F^{e}=\int_{\Omega} u^{n} v-\int_{\Omega} u^{n-1} v+\Delta t \int_{\Omega} \nabla u^{n-1} \cdot \nabla v
$$

- recall ψ_{j} is the hat function at node $\left(x_{j}, y_{j}\right)$
def:
$M_{i j}=\int_{\Omega} \psi_{i} \psi_{j}$ is the mass matrix
$A_{i j}=\int_{\Omega} \nabla \psi_{i} \cdot \nabla \psi_{j}$ is the stiffness matrix
- Firedrake's assembly process turns $F^{e}=0$ into

$$
M \vec{u}^{n}-M \vec{u}^{n-1}+\Delta t A \vec{u}^{n-1} \stackrel{\otimes}{=} 0
$$

where $\vec{u}^{n} \in \mathbb{R}, \quad q=(\#$ of nodes in mesh $)$

- of course: $\vec{u}^{n} \cong u\left(t_{u}, x, y\right)$ new values

$$
\vec{u}^{n-1} \cong u\left(t_{n-1}, x, y\right) \quad \text { old values }
$$

- so $\operatorname{solve}(F==0$, anew,...) in explicit Case solves linear system \otimes for \vec{u}^{n}
- so forward/buchward Euler become matrix iterations:

$$
\begin{aligned}
& F^{e}=0 \Leftrightarrow M \vec{u}^{n}-M \vec{u}^{n-1}+\Delta t A \vec{u}^{n-1}=0 \\
& \Leftrightarrow \vec{u}^{n}=\underbrace{\left(I-\Delta t M^{-1} A\right)}_{Q^{e}} \vec{u}^{n-1} \\
&
\end{aligned}
$$

$$
\begin{aligned}
F^{i}=0 & \Leftrightarrow M \vec{u}^{n}-m \vec{u}^{n-1}+\Delta t A \vec{u}^{n}=0 \\
& \Leftrightarrow \vec{u}^{n}=\underbrace{\left(I+\Delta t M^{-1} A\right)^{-1}}_{=Q^{i}} \vec{u}^{n}
\end{aligned}
$$

lemma: the iteration $\vec{w}^{n}=Q \vec{w}^{n-1}$ will cause some mode (some vector \vec{w}^{0}) to explode exponentially if and only if there is an eigenvalue of Q with magnitude exceeding 1:

$$
\left(\begin{array}{c}
\left.\vec{w}^{n} \begin{array}{c}
\text { can } \\
\begin{array}{l}
\text { explode } \\
\text { exponentially }
\end{array}
\end{array}\right)
\end{array} \Leftrightarrow\left(\begin{array}{c}
\text { there is } \vec{x} \neq 0 \text { so that } \\
Q \vec{x}=\lambda \vec{x}, \\
w_{1} \text { th } \\
|\lambda|>1
\end{array}\right)\right.
$$

- this explains, quantitative, our instability: (explicit time-stoping is observed to be unstable)

$$
\begin{aligned}
& \Leftrightarrow\left(Q^{e} \text { has }|\lambda|>1\right) \\
& \Leftrightarrow\left(I-\Delta t M^{-1} A\right) \vec{x}=\lambda \vec{x} \quad \& \quad|\lambda|>1 \\
& \Leftrightarrow M^{-1} A \vec{x}=\left(\frac{1-\lambda}{\Delta t}\right) \vec{x} \quad \& \quad|\lambda|>1 \\
& \Leftrightarrow M^{-1} A \vec{x}=\alpha \vec{x} \quad \& \quad|1-\alpha \Delta t|>1
\end{aligned}
$$

$$
\Leftrightarrow M^{-1} A \vec{x}=\alpha \vec{x} \quad \& \quad 1-\alpha \Delta t<-1
$$

uses fact that $M^{-1} A$ is similar to an SPD matrix, so α is real
$\Leftrightarrow M^{-1} A$ has an eigenvalue α so that $\alpha>2 / \Delta t$

- note eigenvalues of $M^{-1} A$ are entirely determined by the spatial mesh
- by contrast:
eigenvalues of $Q^{i}=\left(I+\Delta t m^{-1} A\right)^{-1}$ are all less than 1
- So: implicit stepping is stable for any

$$
\Delta t>0
$$

