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Overview

@ Classical Obstacle Problem
» Energy Minimization Formulation

» Variational Inequality Formulation

» Complementarity Formulation

@ Manufacturing a Solution

o Firedrake Implementation



Classical Obstacle Problem
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Figure: Discrete Example
region € which minimizes elastic potential energy, subject to a distributed
load f(x,y), ulspag and u > 1.

Problem: Solve for the displacement of an elastic membrane u(x, y) over a



Classical Obstacle Problem: Energy Minimization
Formulation

o Elastic Potential Energy Functional:

I[v] ::/ 1|Vv|2 — fv.
Q2

» Poisson Equation with Dirichlet Boundary Conditions:
* K={veW"?Q): v]jp =g}
* Solution: u = miE 1v]
ve

» Obstacle Problem:
* Ky ={veWQ):v|pn=g,v>1}

* Solution: u = min [[v]
VEK¢

@ Obstacle Problem is a constrained minimization problem (sometimes).



Classical Obstacle Problem: Energy Minimization
Formulation

@ The solution u defines the following
subsets of Q2 29;

> Active Set A, = {u =}

> Inactive Set R, = {u > ¢} on which u r, Ru
satisfies a PDE (poisson equation)
» Free Boundary ', =0R, N Q2
o v =1 onTl,




Classical Obstacle Problem: Variational Inequality
Formulation

@ By linearity of the integral, /[v] is convex over Ky, and Ky is convex.

@ Suppose u is the solution to the minimization problem. By convexity
of Ky, for all e € [0,1] and v € Ky, we know that u + e(v — u) € Ky.

@ Since u is the minimizer, we know the following directional derivative
at v in a feasible direction is non-negative.

im Iu+ e(v —u)] — Iu] 0.

e—07t €

e Expanding the left hand side gives us a variational inequality (VI).

/Vu-V(v—u)—/f(v—u)ZO, Vv € Ky.
Q Q






Classical Obstacle Problem: Complimentarity Formulation

@ The obstacle problem can be written as an complementarity problem
(CP).
Find u € K such that,
—V2u—f>0
u— 1/] Z 07
(—V2u—f)(u—v)=0.
@ The last condition is called 'Complementarity’

@ Ensures that over all of Q either the poisson equation (strong form) is
being solved or the solution is in contact with the obstacle.



Classical Obstacle Problem: Energy Minimization
Formulation

@ Energy Minimization Formulation can be helpful for understanding
the physics of the problem, and the framing as a constrained
minimization problem.

@ Not every obstacle problem can be solved by minimizing energy.
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» General form VI, K a convex subset of a Sobelev space.

@ Our solver (vinewtonrsls) is designed for nonlinear complementarity
problems.



Manufacturing a Solution
o Let 0 =(-2,2)% f=0.

@ Define the obstacle ¢(r) as the following,

b(r) = {\/l—r2 if r <n,

£(r) if r>r.

Where r = \/x2 + y2, rp = .9 and £(r) = ¥(ro) + ¥ (r0)(r — ro).

@ 1) is a hemisphere of radius 1 with a linear and continuous
differentiable extension from r = .9 and onwards.



Manufacturing a Solution

e: Proposed v

Figur



Manufacturing a Solution

@ For an inactive set R, we know that a solution would satisfy the
Poisson equation,
V2u=0, onR,.

The V? operator in polar coordinates is given by

0?2 10 192

2—7 —_—— —
Vi= or? + r8r+ r2 962"

@ Since 9 is radially symmetric, the solution is radially symmetric so the
PDE simplifies to the following ODE,

rd'(r)+ ' (r) = 0.



Manufacturing a Solution

@ Let a be the radial distance from the origin to the free boundary T.
@ We will enforce u(2) = 0 (radial dirichlet boundary conditions)

@ Then our manufactured problem becomes solving for u such that,
rd"(r)+d'(r) =0, fora<r<2,
with boundary conditions,

u(a) =1(a), u'(a)=7'(a), u(2)=0.
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Figure: Radial cross section of u(r).



Manufacturing a Solution

@ Such an ODE can be solved analytically and has the form,
u(r)=—Alog(r)+ B, fora<r<2.

e Use u(2) =0 to get B in terms of A, then u(a) = ¢(a) and
u'(a) = 1'(a) becomes a system of equations with two unknowns A
and a.
» a = 0.697965148223374
» A =0.680259411891719
» B =0.471519893402112

@ To get the boundary conditions on Q we sample u(r) along 99.



Firedrake Implementation

@ This problem is nonlinear so ... snes?

» vinewtonrsls Vl-adapted Newton solver with reduces space line
search.
» Solves finite nonlinear complementarity problems with the form,

F(w)>0, w>0, F(w)w=0.
e Consider w = u — 1 and F(w) = —V3(w — ) — f

—V2u—f>0 F(w) >0

u—9Y >0 = w
(-Vu—fu—v)=0  Fww=

AV
o

@ In the unconstrained version of this problem, our finite dimensional
problem is simply F(w) = 0.



Firedrake Implementation

o Current iterate wk € R".
e Solve for a search direction d¥ € R".
» Identify the nodal (surely) active and (maybe) inactive sets,

AwX) ={ie{1,...,N}|wk =0 and F;(w*) > 0},

surely
I(w¥) = {i € {1,...N}|wk > 0or Fj(w¥) <0}
N———

maybe
» Compute search direction on the inactive set,
k k k
J(W )/k,/kdlk = —F(W )/k.

> Let,
gk — 0 ifieAwh),
' dfif i e l(wk).



Firedrake Implementation

o Line search along w* 4+ ad*, a > 0 is not guaranteed to be
admissable (w > 0).

Even worse, F(w) (the residual) must be allowed to be positive
because of the active set.

We define the following projection,

0 ifwk<o,
W,-k if W,-k > 0.

proj(w); = {

@ Then line search is conducted on proj(w* + ad*), which stays
admissable (w > 0)

@ We define the following residual,

min{F;(w),0} if w; =0.

o Note F(w) =0, when w is the finite solution.






£y ) Filw) if w; >0,
min{F;(w),0} if w; = 0.
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