a system of PDEs 21 March 2024 the P-V2NCO the def: 10rd 74u = Uxxxx +2 uxxyy K=0 $\nabla^4 u = f$ V=0 $\nabla^2 u=0$ + Uyyyy Q21=0 is called the biharmonic operator (it is (Laplacian)²) 0 11 = 0 $\nabla^2 u = 0$

re, boundary conditions u(x) is plate displacement ~ U=0 and $\nabla^2 u = o''$ corresponds to ersus amping

Fire drake method 1	
$\int (\nabla^4 u) v = \dots = \int (\nabla^2 u) : (\nabla^2 v)$	
R R	in sorted
Firedake method 2 50	positive
$\nabla^4 u = -\nabla^2 v$ where $v = -\nabla^2 u$	we can CG1 1
so: $\nabla^4 u = f$ \iff $-\nabla^2 v = f$ $-v - \nabla^2 u = 0$	
	2nd order

strong form:	-∇ ² v	= f	$\left(\underline{b.c.} \ u=0\right)$,v=0)
· · · · · · · · · · · · · · · · · · ·		$\nabla^2 u = 0$	$\begin{pmatrix} \underline{b.c.} & u=0 \\ on \partial s \end{pmatrix}$	z)
weak form: n	nultiply Si	ist equation	n by re Ho	(x)
and second				
			$\int (q^2 u) S = O$	· · · · · · ·
52 integrate by por	Je and use	r=0 8	R s=o along d	л:
S⊽v•⊽r Sz	-Sfr- s	$\int_{\mathcal{R}} vs + \int_{\mathcal{R}} s$	∇k •∇s = 0	

So: F=(dot(grad(v),grad(r)) - f*r -v*s + dot(grad(u),grad(s))* dx					
block structure:		· · · · · · · · · · · · · · · · · · ·			
ΓA	07[v]_[f]				
L-I	$ \begin{array}{c} O \\ A \end{array} \begin{bmatrix} V \\ u \end{bmatrix} = \begin{bmatrix} f \\ O \end{bmatrix} $				
where					
$A \approx - P$	2 is discretized	Laplacian			

Solver choices: -pc_type fieldsplit one can precondition by inverting blockwise $\begin{bmatrix} A^{-1} & 0 \\ 0 & A^{-1} \end{bmatrix} \begin{bmatrix} A & 0 \\ -T & A \end{bmatrix} \begin{bmatrix} v \\ u \end{bmatrix} = \begin{bmatrix} A^{-1} & 0 \\ 0 & A^{-1} \end{bmatrix} \begin{bmatrix} f \\ 0 \end{bmatrix}$ additive additive fieldsplit $\begin{bmatrix} I & o \\ -A' & T \end{bmatrix} \begin{bmatrix} v \\ u \end{bmatrix} = \begin{bmatrix} A' f \\ O \end{bmatrix} \begin{bmatrix} system \\ stast to \\ solve \end{bmatrix}$ where really (`A' = (apply good preconditioner) for example, (A' = (apply good preconditioner) multiginal to that block

Conclusion: a good option combinition 3	< <u>not</u>
snes_type: ksponly	the only
ksp-type: gares	9001
pc-type: fieldsplit	option combination
pc-fieldsplit_type: additive	· · · · · · · · · · · · ·
fieldsplit_O_ksp_type: preonly	
fieldsplit - 0 - pc - type: gæng	
fieldsplit _ 1_ ksp-type: preonly	Jemo.
fieldsplit_1_pc_type: gamg	plate.po