a system of PDES
21 March 2024

re, boundary conditions
 $" u=0$ and $\nabla^{2} u=0$ " corresponds to pinning

Fire drake method 1

$$
\int_{\Omega}\left(\nabla^{4} u\right) v=\ldots=\int_{\Omega}\left(\nabla^{2} u\right):\left(\nabla^{2} v\right) \ldots
$$

not doing that, although it is possible
in sorted
Firedrake method 2
minus that we have
$\nabla^{4} u=-\nabla^{2} v \quad$ where $v=-\nabla^{2} u$ positive. operators
so:

$$
\begin{aligned}
& \nabla_{\text {scalar, } 4 \text { th order }}^{4} u=f \\
& -\nabla^{2} s \\
& -v-\nabla^{2} u=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { we cam } \\
& \text { use CG } \frac{1}{\text { elem }}
\end{aligned}
$$ elements

system, Ind order
strong form:

$$
\begin{array}{cc}
-\nabla^{2} v & =f \\
-v-\nabla^{2} u=0 & \binom{\text { b.c. } u=0, v=0}{\text { on } \partial \Omega}
\end{array}
$$

weak form: multiply first equation by $r \in H_{0}^{\prime}(\Omega)$ and second by $s \in H_{0}^{\prime}(\Omega)$, and add:

$$
-\int_{\Omega}\left(\nabla^{2} v\right) r-\int_{\Omega} f r-\int_{\Omega} v s-\int_{\Omega}\left(\nabla^{2} u\right) s=0
$$

integrate by parts and use $r=0 \& s=0$ a long $\partial \Omega$:

$$
\int_{\Omega} \nabla v \cdot \nabla r-\int_{\Omega} f r-\int_{\Omega} v s+\int_{\Omega} \nabla n \cdot \nabla s=0
$$

So:

$$
\begin{aligned}
F= & (\operatorname{dot}(\operatorname{grad}(v), \operatorname{grad}(r))-f * r \\
& -v * S+\operatorname{dot}(\operatorname{grad}(u), \operatorname{grad}(s)) * d x
\end{aligned}
$$

now Firedrake builds a linear system...
block structure:

$$
\left[\begin{array}{cc}
A & 0 \\
-I & A
\end{array}\right]\left[\begin{array}{l}
v \\
u
\end{array}\right]=\left[\begin{array}{l}
f \\
0
\end{array}\right]
$$

where
$A \approx-\nabla^{2}$ is discretized Laplaeion

Solver chokes: -ectype fieldsplit one can precondition by inverting blockwise

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A^{-1} & 0 \\
0 & A^{-1}
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
-I & A
\end{array}\right]\left[\begin{array}{l}
v \\
u
\end{array}\right]=\left[\begin{array}{ll}
A^{-1} & 0 \\
0 & A^{-1}
\end{array}\right]\left[\begin{array}{l}
f \\
0
\end{array}\right]} \\
& \text { fordsive } \\
& \text { arildsplit }\left[\begin{array}{cc}
I & 0 \\
-A^{-1} & I
\end{array}\right]\left[\begin{array}{l}
v \\
u
\end{array}\right]=\left[\begin{array}{c}
A^{-1} f \\
0
\end{array}\right] \begin{array}{l}
\text { this linear } \\
\text { system } \\
\text { si st to } \\
\text { solve }
\end{array}
\end{aligned}
$$

where really
for example, $\left\{A^{-1 "}=\right.$ (apply good preconditioner) multigind to that block

Conclusion: a good option combination $\}<$ not
snes-type: ksponly
ksp-type: gmres
$p c$-type: fieldsplit
pc-fieldsplit_type: additive
fieldsplit_0_ksp_type: preonly
fieldsplit-0-pc-type: gamg
fieldsplit-1-ksp-typee preonly
fieldsplit_1-pc-type: gamg

