a	nonlinear ver	rsion of	Poisson 21 March 2024
L	iouville - Bratu	equation	
· · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	models steady-state
14	U <i>=</i> 0		heat anduction plus
· · · · · · ·			an exponentially growing
U=0	$\nabla^2 u + \lambda e^{u} =$	0 u=0	exothermic reaction
U=0			i.e. a warm
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·	block of explosive
2			

 $-seek u(x,y) \in H'(r)$ strong $\left[-\nabla^{2}u-\lambda e^{u}=0\right] \in$ weak $\int - (\nabla^2 u) v - \lambda e^4 v = 0$ $-\int_{\nabla \nabla u \cdot \hat{n}} + \int_{\nabla u} \nabla v - \lambda e^{u} v = 0$ for all JEHO(J) $F(u) = \iint_{\mathcal{T}} \nabla u \cdot \nabla v - \lambda e^{u} = 0$ $F = (dot(grad(u), grad(v)) - lam \neq exp(u) \neq v)$ Firedake: * dx

Newton method U⁽⁰⁾ initial guess of solution F(u^{Ck+1)} = 0 = want this $F(u) \approx F(u^{(u)}) + J_F(u^{(u)})(u - u^{(u)})$ Clinear approx. around uc Newton stp equation: Firedvalue computes this derivative update: (Jacobian) update: (Jacobian) update: (Jacobian) $u^{(k+1)} = u^{(k)} + S$ $J_{E}(u^{(\omega)})S) = -F(u^{(\omega)})$

need to know: for nonlinear PDES,	· · ·
· set up weak form as usual	· · · ·
$F = \bullet \bullet \bullet$	· · · ·
• call solve (F==0, U, bcs,)	· · ·
as usual Int up these or similar:	ave He
• but use these or similar: Isnes-type: 'newtonls',	
snes_converged_reason': None,	· · · ·
'snes_linesearch_type': 'basic'	· · ·
'snes_rtol': le-8, <	• • •

· · · · · · · · · ·	PETSc's SNES component will
· · · · · · · · · ·	manage the Newton iteration, and
· · · · · · · · · ·	you will get feedback on its success
· · · · · · · · · ·	(esp. Snes_ converged - reason)
· · · · · · · · · · · ·	e what you want to see is a small
· · · · · · · · · ·	number of Newton iterations,
	insensitive to resolution
bratu.Py	· for nonlinear problems it does matter what is your initial iterate in U
	· · · · · · · · · · · · · · · · · · ·