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Outline

1 sines (and complex exponentials) are orthonormal

2 what did Fourier believe? (1822)

3 what did Dirichlet prove? (1829)

4 what is the full story for Fourier series on C[−π, π]? (1966)

5 what is the clean L2 version of the story? (∼1910)

6 theory from the book

Ed Bueler Fourier series of continuous functions Spring 2026 2 / 36



the product-of-sines integral

for n ∈ N, sin(nx) is a wave on [0, π]
suppose m,n ∈ N and integrate the product of sines:∫ π

0
sin(mx) sin(nx)dx =

=

{
π
2 , m = n
0, otherwise

cos(θ ± ψ) = cos θ cosψ ∓ sin θ sinψ ∴ sin θ sinψ = 1
2 (cos(θ − ψ)− cos(θ + ψ))
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an infinite orthonormal set in C[0, π]

fact from last slide:
∫ π

0
sin(mx) sin(nx)dx =

π

2
δmn

define

ϕn(x) =

√
2
π
sin(nx) and S = {ϕn(x) : n ∈ N}

then:
1 S is orthonormal in the (real) inner product ⟨f , g⟩ =

∫ π

0 f (x)g(x) dx :

2 S is linearly independent:

questions: what is span(S)? what is span(S)?
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an infinite orthonormal set in C[0, π]
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a complex-valued orthonormal set in C[−π, π]

easier integral:∫ π

−π

eimxe−inx dx =

∫ π

−π

ei(m−n)x dx = = 2πδmn

define
ψn(x) =

1√
2π

einx and E = {ψn(x) : n ∈ Z}

recall complex inner product (sesquilinear :-) ), now on C[−π, π]:

⟨f ,g⟩ =
∫ π

−π

f (x)g(x)dx

then:
1 E is orthonormal
2 E is linearly-independent

same big question: what is span(E)?
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before we move on . . .

basic facts about eiθ:
eiθ = cos θ + i sin θ
◦ derive this from ez = 1 + z + z2

2! + · · ·+
n2

n! + . . .
◦ also recall Taylor series for cos and sin

cos θ =
1
2
(
eiθ + e−iθ), sin θ =

1
2i
(
eiθ − e−iθ)

basic facts about even and odd Fourier series:
if f is even then∫ π

−π

f (x)e−inx dx =

∫ π

−π

f (x) cos(nx)dx = 2
∫ π

0
f (x) cos(nx)dx

if f is odd then∫ π

−π

f (x)e−inx dx = i
∫ π

−π

f (x) sin(nx)dx = 2i
∫ π

0
f (x) sin(nx)dx
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Fourier’s assertion

claim (Fourier, Théorie Analytique de la Chaleur, 1822)
if f ∈ C[0, π], and if we compute these coefficients

cn = ⟨f , ϕn⟩ =
√

2
π

∫ π

0
f (x) sin(nx)dx

for n ∈ N, then

f (x) =
∞∑

n=1

cn ϕn(x) =

√
2
π

∞∑
n=1

cn sin(nx)

the result is the Fourier sine series (or expansion) of f
actually Fourier claimed this for discontinuous functions too
◦ observe that cn is an integral, so only features of f that change the integrals

can affect the expansion
◦ Fourier, and everybody else, agreed that the claim could not be exactly true

at the points of discontinuity of f (x)
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complex version is easier

Fourier used real numbers (to my knowledge)
we may replace

C[0, π]→ C[−π, π] and sin(nx)→ einx ,

and use the complex (sesquilinear) inner product

Fourier’s claim for complex exponentials
if f ∈ C[−π, π], complex-valued, and if

cn = ⟨f , ψn⟩ =
1√
2π

∫ π

−π

f (x)e−inx dx

for n ∈ Z, then

f (x) =
∑
n∈Z

cn ψn(x) =
1√
2π

∑
n∈Z

cneinx

this is the Fourier series of f , or the complex Fourier series
for formulas from different references, be careful where the 2π goes
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example 1: f (x) = x

consider the Fourier sine series for f (x) = x , using the real orthonormal

set {ϕn(x) =
√

2
π sin(nx)} ⊂ C[0, π]

integrate to get coefficients:

cn = ⟨f , ϕn⟩ =
√

2
π

∫ π

0
x sin(nx)dx =

=

√
2π(−1)n−1

n
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example 1: f (x) = x

MATLAB:

f = @(x) x;
x = 0:pi/300:pi; N = 150; nn = 1:N;
c = sqrt(2 * pi) * (-1).^(nn - 1) ./ nn;
sN = zeros(size(x));
for n=1:N

sN = sN + c(n) * sqrt(2/pi) * sin(n*x); end
plot(x, f(x), x, sN)

result (works . . . but Gibbs effect!):
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example 2: g(x) cubic

note that if f (x) = x is extended periodically to the real line then the result
is not continuous

instead consider g(x) = x(x − 1)(x − π) on the interval [0, π]
now the periodic extension is continuous

coefficients, done numerically: cn = ⟨g, ϕn⟩ =
√

2
π

∫ π

0
g(x) sin(nx)dx

MATLAB result: coefficient decay:
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n

|c
n
|

|<f,φn>|

|<g,φn>|
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approximating f

again consider complex Fourier series for f ∈ C[−π, π], namely

cn =
1√
2π

∫ π

−π

f (x)e−inx dx , f (x) =
1√
2π

∑
n∈Z

cneinx

combine into one formula and exchange limit processes:

f (x) =
1√
2π

∑
n∈Z

(
1√
2π

∫ π

−π

f (y)e−iny dy
)

einx

=

∫ π

−π

(
1

2π

∑
n∈Z

e−iny einx

)
f (y)dy =

∫ π

−π

(
1

2π

∑
n∈Z

ein(x−y)

)
f (y)dy

◦ exchange of integral and sum is justified if
∑
|cn| <∞

if the inner sum is approximated by a partial sum, then we are
approximating f by integrating it against a kernel
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Dirichlet’s kernel

Definition (Dirichlet’s kernel, 1829)

Dm(x) =
1

2π

m∑
n=−m

einx why?
=

1
2π

+
1
π

m∑
n=1

cos(nx)

Fourier’s claim has become:

f (x) =
1√
2π

∑
n∈Z

cneinx

= lim
m→∞

∫ π

−π

Dm(x − y) f (y) dy
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properties of the kernel

Definition (Dirichlet’s kernel)

Dm(x) =
1

2π

m∑
n=−m

einx

Lemma (properties of the kernel)
1 Dm is continuous,

2

∫ π

−π

Dm(x)dx = 1,

3 Dm(0) =
m+1/2

π , thus Dm(0)→∞ as m→∞, and

4 Dm(x) =
1

2π
sin((m + 1/2)x)

sin(x/2)
for x ̸= 0.

Proof. Properties 1 , 2 , 3 are easy from the definition of Dm. Property 4 is on the
next slide.
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Dirichlet’s kernel as a sine ratio

Property 4 : Dm(x) =
1

2π
sin((m + 1/2)x)

sin(x/2)

Proof. Apply knowledge of geometric series, then use sin θ = (eiθ − e−iθ)/(2i):

m∑
n=−m

einx =
m∑

n=−m

(
eix
)n

= e−imx
2m∑
n=0

(
eix
)n

= e−imx 1− (eix)2m+1

1− eix =
e−imx − ei(m+1)x

1− eix

=
e−i(m+1/2)x − ei(m+1/2)x

e−i(x/2) − ei(x/2)

=
sin((m + 1/2)x)

sin(x/2)

The above calculation applies for x ̸= 0.
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Dirichlet’s theorem (1829)

Theorem
If f ∈ C[−π, π] is periodic, and if f ′(x) exists at x ∈ [−π, π], then

lim
m→∞

∫ π

−π

Dm(x − y) f (y)dy = f (x),

and thus Fourier’s claim is true:

f (x) =
1√
2π

∑
n∈Z

cneinx for cn =
1√
2π

∫ π

−π

f (x)e−inx dx

The proof is based on the Riemann-Lebesgue lemma. This version only
requires the Riemann integral, and Dirichlet must have known it. I will
prove it after using it.

Lemma (Riemann-Lebesgue for continuous functions)

If g ∈ C[a,b] then lim
n→∞

∫ b

a
g(x)einx dx = 0.
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Dirichlet’s theorem (1829)

Proof. By the periodicity of Dm and f , and since Dm is even, use y = x + ξ to show∫ π

−π

Dm(x − y) f (y) dy =

∫ π

−π

Dm(ξ) f (x + ξ) dξ

By replacing f (x + ξ) with f̃ (ξ), we may assume x = 0 and f ′(0) exists. Next we
calculate using the proven properties of the kernel:∫ π

−π

Dm(ξ) f (ξ) dξ =
∫ π

−π

Dm(ξ) (f (ξ)− f (0)) dξ +
∫ π

−π

Dm(ξ) f (0) dξ

= f (0) +
1

2π

∫ π

−π

(f (ξ)− f (0))
sin((m + 1/2)ξ)

sin(ξ/2)
dξ

However, f ′(0) exists, so by L’Hopital’s rule,

lim
ξ→0

f (ξ)− f (0)
sin(ξ/2)

= lim
ξ→0

f (ξ)− f (0)
ξ

ξ

sin(ξ/2)
= 2f ′(0)
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Dirichlet’s theorem (1829)

Proof continued. So now we know that this function is continuous (removable
discontinuity):

h(x) =

{
f (x)−f (0)
sin(x/2) , x ̸= 0

2f ′(0), x = 0

Thus by the Riemann-Lebesgue lemma:

lim
m→∞

∫ π

−π

Dm(ξ) f (ξ) dξ = f (0) +
1

2π
lim

m→∞

∫ π

−π

h(ξ) sin((m + 1/2)ξ) dξ

= f (0) + 0 = f (0).
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Riemann-Lebesgue lemma for continuous functions

Lemma

If g ∈ C[a,b] then lim
n→∞

∫ b

a
g(x)einx dx = 0.

Proof. Let ϵ > 0. Since g is continuous on the compact set [a, b], it is uniformly
continuous, so there is δ > 0 such that |x − y | < δ =⇒ |g(x)− g(y)| < ϵ/(2(b − a)).
In particular we can define a mesh of points {xi}M

i=0, with spacing less than δ, and x∗
i at

the midpoints of each [xi−1, xi ], so that

g̃(x) =
M∑

i=1

g(x∗
i )1[xi−1,xi )(x)

is a uniform approximation of g: ∥g̃ − g∥∞ = sup
x∈[a,b]

|g̃(x)− g(x)| < ϵ

2(b − a)
picture:
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Riemann-Lebesgue lemma for continuous functions

Proof continued. Now∣∣∣∣∫ b

a
g(x)einx dx

∣∣∣∣ ≤ ∣∣∣∣∫ b

a
(g(x)− g̃(x))einx dx

∣∣∣∣+ ∣∣∣∣∫ b

a
g̃(x)einx dx

∣∣∣∣
≤ ∥g − g̃∥∞

∫ b

a
|einx | dx +

∣∣∣∣∣
∫ b

a

M∑
i=1

g(x∗
i )1[xi−1,xi )(x)e

inx dx

∣∣∣∣∣
≤ ϵ

2(b − a)
(b − a) +

M∑
i=1

|g(x∗
i )|

∣∣∣∣∣
∫ xi

xi−1

einx dx

∣∣∣∣∣
But each of the final integrals is bounded by the same constant:∣∣∣∣∣

∫ xi

xi−1

einx dx

∣∣∣∣∣ =
∣∣∣∣einxi − einxi−1

in

∣∣∣∣ ≤ 2
n

Choose N so that (2∥g∥∞M)/N < ϵ/2. If n ≥ N then∣∣∣∣∫ b

a
g(x)einx dx

∣∣∣∣ ≤ ϵ

2
+

2
n

M∑
i=1

|g(x∗
i )| ≤

ϵ

2
+

2
N

M∑
i=1

∥g∥∞ <
ϵ

2
+
ϵ

2
= ϵ
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1. sines (and complex exponentials) are orthonormal

2. what did Fourier believe? (1822)

3. what did Dirichlet prove? (1829)

4. what is the full story for Fourier series on C[−π, π]? (1966)

5. what is the clean L2 version of the story? (∼1910)

6. theory from the book
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does the Fourier series converge for any f ∈ C[−π, π]?

in 1873 Du Bois-Reymond constructed a continuous function for which
the Fourier series does not converge at a point

◦ found by google search: f (x) =
∞∑

k=1

1
k2 sin

(
(2k3

+ 1)|x |
2

)
◦ the function is even and continuous,1 so

its Fourier series is a cosine series
◦ it can be shown that the Fourier partial

sums are unbounded in a neighborhood
of x = 0

in the early 1900s, further examples were constructed where
convergence failed on infinite sets of points
to state the full situation we need to define measure zero . . .

1use Weierstrass M-test
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sets of measure zero

Definition
a set E ⊂ R has (Lebesgue) measure zero if for any ϵ > 0 there exists a
countable list of open intervals In = (an,bn) so that

E ⊂
⋃
n∈N

In and
∑
n∈N

m(In) =
∑
n∈N

bn − an < ϵ

if a proposition holds except on a set E which has measure zero then we
say that it holds almost everywhere

note that any open subset of R is a countable union of open intervals
more on Lebesgue measure m, and measure zero, in Chapter 3
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the full story for Fourier series of continuous functions

Theorem (Carleson, 1966)
if f ∈ C[−π, π], or even f ∈ Lp[−π, π], then the Fourier series of f converges
pointwise almost everywhere:

lim
m→∞

m∑
n=−m

cneinx = f (x) except on x ∈ E of measure zero

Theorem (Katznelson, 1966)
for any set E ⊂ [−π, π] of measure zero there is a continuous periodic
function f ∈ C[−π, π] whose Fourier series diverges at all points of E
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orthonormal sequences in inner product spaces

the abstract ideas of Hilbert and Riesz, circa 1910, are fundamentally
simpler than all of the previous material in these slides
consider an abstract inner product vector space V , ⟨·, ·⟩

Definition
a pair of vectors v ,w ∈ V are orthogonal if ⟨v ,w⟩ = 0
a set S is orthogonal if v ,w ∈ S and v ̸= w implies v ,w are orthogonal
(vk )

∞
k=1 ⊂ V is an orthonormal sequence (ON sequence) if vk , vl are

orthogonal for k ̸= l and if ∥vk∥2 = ⟨vk , vk ⟩ = 1

Lemma
an orthogonal set is linearly-independent
an ON sequence is linearly-independent
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examples of orthonormal sequences

{√
2
π
sin(nx)

}
n∈N

is a (real) ON sequence on [0, π]

{
1√
2π

einx
}

n∈Z
is an ON sequence on [−π, π]{

1√
2π

einx
}

n∈N
is an ON sequence on [−π, π]{√

2
π
cos(nx)

}
n∈N

is a (real) ON sequence on [0, π]

{√
1
π
sin(nx)

}
n∈N

is a (real) ON sequence on [−π, π]

the Legendre polynomials2 form an ON sequence

2with a different normalization these are: 1, x , 1
2 (3x2 − 1), 1

2 (5x3 − 3x), . . .
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examples of orthonormal sequences

{√
2
π
sin(nx)

}
n∈N

is a (real) ON sequence on [0, π] ←− complete

{
1√
2π

einx
}

n∈Z
is an ON sequence on [−π, π] ←− complete{

1√
2π

einx
}

n∈N
is an ON sequence on [−π, π] ←− not complete{√

2
π
cos(nx)

}
n∈N

is a (real) ON sequence on [0, π] ←− not complete

{√
1
π
sin(nx)

}
n∈N

is a (real) ON sequence on [−π, π] ←− not complete

the Legendre polynomials2 form an ON sequence ←− complete

2with a different normalization these are: 1, x , 1
2 (3x2 − 1), 1

2 (5x3 − 3x), . . .
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fundamental question about an orthonormal sequence

question
given an ON sequence S = (fk ) from an inner product space (V , ⟨·, ·⟩), is
its span dense in V?:

is spanS = V?

this question becomes a definition . . .

Definition
an ON sequence S = (fk ) in an inner product space (V , ⟨·, ·⟩) is complete if for
every f ∈ V there exist coefficients ck so that

f = lim
N→∞

N∑
k=1

ck fk =
∞∑

k=1

ck fk
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abstract Fourier coefficients and Fourier series

Theorem 4.1
Suppose that f =

∑∞
k=1 ck fk for an ON sequence S = (fk ) in an inner product

space V , ⟨·, ·⟩. Then
ck = ⟨f , fk ⟩

the proof is easy . . . we will do it

Definition
for f ∈ V , the Fourier coefficients for an ON sequence S = (fk ) are

ck = ⟨f , fk ⟩

the Fourier series of f ∈ V , for an ON sequence S = (fk ), is

∞∑
k=1

⟨f , fk ⟩ f
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how to prove an ON sequence is complete?

the Fourier series is always in V , but that does not imply, by itself, that it
equals f
if the ON sequence is complete then f equals its Fourier series
part (c) of the following theorem is the most practical way to show an ON
sequence of functions on an interval is complete

Theorem 4.5
for an ON sequence S = (fk )k∈N in L2 = L2([−π, π],m), the following are
equivalent:
(a) S is a complete ON sequence
(b) for every f ∈ L2 and ϵ > 0 there is a finite linear combination

g =
∑n

k=1 dk fk so that ∥f − g∥2 < ϵ

(c) if the Fourier coefficients of f ∈ L2, for the ON sequence S, are zero then
the function f is zero almost everywhere

we will prove this Theorem
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Fourier’s claim is true if convergence is in L2

Theorem 4.6 (rewritten in complex form)

The ON sequence S =
(

1√
2π

einx
)

n∈Z
is complete in L2([−π, π],m). Therefore

f (x) =
1√
2π

∞∑
n=−∞

cneinx ,

for these coefficients

cn =
1√
2π

∫ π

−π

f (x)e−inx dx ,

in the sense that the partial sums converge to f in the norm ∥ · ∥2

this is the simplest interpretation of Fourier’s claim
◦ however, it does address continuous functions directly

if f (x) is real-valued we may write, for some real constants an,bn,

f (x) =
a0

2
+

∞∑
n=1

an cos(nx) + bn sin(nx)
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theory in weeks 4 & 5: Chapter 4 in Saxe

we will do Fourier series (Chapter 4) before Lebesgue integrals and
measures (Chapter 3)

to define:
L2([a,b],m) and L2(X , µ) ←− not fully defined till Chapter 3
complete orthonormal sequence
Fourier series and coefficients for any orthonormal sequence

to prove:
Bessel’s inequality
Parseval’s equality
the Riesz-Fischer theorem
Theorem 4.6: Fourier series converge in L2

Assignment 3 is posted at bueler.github.io/fa
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