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Outline

0 a classic boundary value problem
@ integral operators

e compact subsets of C([0, 1])

@ bounded and compact operators

e other views of the boundary value problem
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boundary value problem

second-order BVP (“2-point problem”)
suppose «, 5 € R and ¢ € C([0, 1]) are given. solve for u(x):
—Uu"(x) = ¢(x) forall x € (0,1)
u(0) =«
u(l) =5

@ picture of data ¢ (left) and solution u (right):

@ we will see this is solvable by hand, at least as an integral of the data
#(x), but this is mildly difficult, so we warm-up with an easier problem
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easier: initial value problem

second-order IVP
suppose «, 3 € R and ¢ € C([0, 1]) are given. solve for u(x):

—u"(x) = ¢(x) forall x € (0,1)
u(0) = «
u(0)=253

@ picture:
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solution of IVP

apply fundamental theorem of calculus twice:

—U(x) = 6(x)
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solution of BVP

apply fundamental theorem of calculus twice: +— it will be more work

—U(x) = 6(x)
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solution of BVP

result: 1
ux)=a+ (B —a)x+ / k(x,t)o(t) dt
0
where k is a symmetric kernel.

— <t< x<
k(x,t)—{tu x), 0<t<x<1

=min{x, t} — xt
x(1-1), 0<x<t<1 min{x, t}
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k(x,t) for the BVP

picture of k(x, t):
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integral solution of BVP

@ restrict to the a = # = 0 special case

2-point BVP

the solution of
—u'"=¢, u0)=u(1)=0

u(x) = /0 "kut)e(tydt  where K(x. ) = min{x, t) — xt

@ u is the output of a linear integral operator
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Outline

2. integral operators
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the integral operator

Definition
given a suitable kernel k(x, t), the integral operator L : C([0,1]) — C([0,1]) is

1
(L)(x) = /O K(x. )(t) ot

@ Lislinear:

@ is L a matrix?
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wait ...does ¢ € C([0,1]) = L¢ € C([0,1])?

Definition
given a suitable kernel k(x, t), the integral operator L : C([0,1]) — C([0,1]) is

(L)(x) = /O K(x. )(t) ot

@ what does “suitable” mean?
@ is L¢ even well-defined? is Ly € C([0,1])?

@ for ¢ € C([0,1]), we see that (L¢)(x) is well-defined if k(x, t) is
(Riemann) integrable in t for every x

@ what conditions on k(x, t) guarantee that
¢ € C([0,1]) = Lo < C([0,1])?

o does k(x, t) itself need to be continuous?

Ed Bueler Boundary value problems and integral operators Spring 2026 12/37



example: the antiderivative (as an integral operator)

Definition
for fixed a € [0, 1], an antiderivative operator A : C([0,1]) — C([0,1]) is

(a0 = [ Por.

@ the FTC shows this is an antiderivative:

@ these integrals with variable limits give Volterra integral operators,
whereas L on the previous slide is a Fredholm integral operator
o look it up?
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kernel of the antiderivative operator

@ can the ant|der|vat|ve operator (Ag)(x) = fo ¢(t) dt be put into the kernel
form (Lo)(x fo t) dt?

@ yes, and k(x, t) is discontinuous (picture at right):

1, t<x
kmnz% o = Toa(®

@ compute:

1 1 X
uwn—Aunwmw—ﬁﬂmwmmw—4¢mw—mwn
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Lipschitz kernels

@ regarding what conditions on k(x, t) imply L : C([0,1]) — C([0, 1]), here
is a sufficient condition
Definition
a function k : [0, 1] x [0, 1] — R is Lipschitz in x if there is C > 0 so that for all
x,y €[0,1]and t € [0,1], |k(x,t) — k(y,t)| < C|x —y]|

Lemma

if k(x,t) is Lipschitz in x, and if (L¢)(x) = f01 k(x, t)o(t) dt for ¢ € C([0,1]),
then Ly € C(]0,1])

@ proof on next slide

@ this is not a comprehensive theory of integral operators, but it gives me
something to prove with elementary tools
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Lipschitz kernels

Lemma

if k(x, t) is Lipschitz in x, and if (Lp)(x) = f01 k(x,t)¢(t) dt for » € C([0,1]),
then Ly € C([0,1])

Proof. Let ¢ € C([0, 1]), and consider the function L¢ at a point x € [0, 1]. Suppose
e>0.Letd =¢/(Cll¢|l). If y € [0,1] and |x — y| < ¢ then by the triangle inequality
for integrals, and the definition of Lipschitz,

(Lo - L) =| [ wx oot~ [ Ky tot0 ot
/ Ik(x, 1) — k(. B)] |6(1) ot < / Clx — yl|6(t) ot

s/o Clx — y| [¢llow dt = Cllllowlx — ¥ < Cldflocb=¢ O
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returning to the BVP ...

recall: solution of 2-point BVP

the solution of
—Uu'"=¢, u0)=u(1)=0

]
is u(x):/ k(x,t)o(t)dt where
0

Jt(1=x), t<x
k(x,t) = {X(1 ) x<t min{x, t} — xt

Corollary

since the above kernel is Lipschitz in x, with C = 0.5, it follows that
u e C([0,1]) if¢ € C(]0,1])

@ but we already knew that this L sends C([0, 1]) to itself ...why?
@ infact: if ¢ € C([0, 1]) then u(x) has two derivatives
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bounded kernel is not enough

Q. is integrability and boundedness of k sulfficient for
L: C([0,1]) — C([0,1])?
A. no. there exist integrable bounded, and discontinuous k(x, t) so that
fo t) dt is not continuous

example

1, x<05
k(X’t):{o X>05

and ¢(x) = 1 gives
(Lo)(x) =

@ regarding necessary and sufficient conditions, | do not know!
@ feel free to do research and try it yourself
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pictures of three kernels

on f, x axes, sketch contour maps?:

_Jt1—=x), t<«x )1, t<x _J1, x<05
k‘(X’t)_{x(pt), x<t kZ(X’t)_{o, t> x k3(“)_{o, x>05
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Outline

3. compact subsets of C([0, 1])
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C([0.1]), || - || is @ normed vector space

@ recall stuff from Chapter 1 of Saxe, Beginning Functional Analysis

Definition
for f € C([0,1]),let  [|flloc = sup |f(X)] = max |f(x)|
x€[o, x€[0,1]
@ picture:

o if V= C([0,1]) then (V, | - ||~) is @ normed vector space
o there are four properties to check: (i), (ii), (iii), (iv)
o recall: d(f,9) = ||f — g|l. makes (V, d) a metric space

@ recall: convergence in || - ||« is uniform convergence
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compact sets

@ now Chapter 2 of Saxe, Beginning Functional Analysis

@ we assume (V.| - ||) is a normed vector space

@ recall: asubset S C Vis openifVxe S3r>0sothat B/(x) C S
o Bi(x)={yeV:|y—x| <r}isan open ball

Definition

C = {Sx}csis an open cover of E C Vif Sy C V is open for each A € I and

Definition
@ asubset E C V is compact if every open cover of E has a finite subcover

@ asubset E C V is sequentially compact if every sequence in E contains
a convergent subsequence

@ fact: a finite set is compact

Theorem 2.4
E c Vis compact if and only if it is sequentially compact
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the unit ball in V = C(]0, 1]) is not compact

Theorem 2.3
if E C V is compact then it is closed ‘

Theorem
the closed unit ball B1(0) = {y € V = C([0,1]) : ||y|lco < 1} is not compact J

Proof. The hat functions 1n(x), n € N, drawn below, are continuous, and each has norm

l4n]loo = 1, thus ¢n € By(0). Also, for any n # m, ||¥n — ¥m|lcc = 1. Any subsequence (ip, ) of
the sequence (yn) would not converge because again ||¢n, — ¥n, ||« = 1for j # k. Thus By(0)
is not compact. O

@ Corollary. if E C V = C([0,1]) contains a ball of positive radius
B:(x) C E, no matter how small r > 0 is, then E is not compact
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why would we want sets to be compact?

Extreme Value Theorem (Weierstrass)

if E C Viscompactand f: E — R is continuous then there exists a maximum
and a minimum of f

@ here (V,| - ||) is any normed vector space
@ the conclusion is that there are ¢, C € E so that

f(c) < f(x) < f(C)

forall x ¢ E

@ slightly more generally, one can consider continuous f : M — R where
(M, d) is any compact metric space

@ compact subsets of V = C([0, 1]) are a major focus of Chapter 2
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Outline

4. bounded and compact operators
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bounded and compact operators

@ assume (V, || - ||) is a normed vector space
@ the closed unitballis B={y c V : |ly|| < 1}

Definition
@ alinear operator L : V — V is bounded if there is a constant C > 0 so that
IILv|| < C|lv|| forallveV

@ alinear operator L : V — V is compact if the image of the closed unit ball
under L, that is, the set LB, is compact

@ we will see that “bounded” is the same as “continuous” for linear
operators
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bounded integral operators on C([0, 1])

Theorem
Let V = C([0,1]) with || - || as the norm. Consider the operatorL: V — V,
1

(Lp)(x) = /0 k(x, t)p(t) dt. If k(x, t) is integrable and

1
sup / |k(x, )| dt < o0
xe[0,1]1J0

then L is bounded.

Proof. Suppose ¢ € V. Then by the triangle inequality,

1
Lol = sup I(LE)0| = sup | [ k(x,to(e) ot
x€[0,1] x€[o,1] |0

1 1
< sup / Ko nllo(] o< sup. /0 IK(x, B)l|l]oo ot

x€lo,
- ( sup / IK(x, D) dt) 1lloc
x€[0,1]
Thus [|Léllec < Cllél Where C = sup,cpo1) fo IK(x, D)l dt. O
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new idea: equicontinuous sets of functions

Definition (see section 2.1)

aset E C C([a, b]) is equicontinuous at x € [a, b] if for each ¢ > 0 there is
0>0sothatfe Eandy € [a,b] and |x — y| < d implies |f(x) — f(y)| < e

@ this is about quantifiers!
@ fcontinuous at x € [a, b]:

Ye>03>0Vyelab |x—yl<d = |[f(x)—1f(y)| <e
@ E equicontinuous at x € [a, b]:
Ve>030>0Vfe Evyeclabl |x—yl<é = |f(x)—f(y) <e
Definition

a set E C C([a, b]) is uniformly equicontinuous if for each € > 0 there is § > 0
sothat f € Eand x,y € [a,b] and |x — y| < ¢ implies |f(x) — f(y)| < €

@ more on equicontinuity in Chapter 2 of Saxe, Beginning Functional
Analysis
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new idea: some integral operators are compact

Ascoli-Arzela Theorem

aset E C C([a, b])is compact, in the topology of the || - |- norm, if and only if
it is closed, bounded, and uniformly equicontinuous

@ now we can return to the BVP!

Theorem
Consider Bg(0) c V = C([0,1]). For ¢ € Bg(0) the solution of

—u"'=¢, u()=u(1)=0

is u(x)= fo t)dt where k(x,t) = min{x,t} — xt. Then
ueE where E LBH(O) is a compact subset of V.

Proof. Show E is closed and bounded. Show E is uniformly equicontinuous by using the fact that
k(x, t) is Lipschitz in x. O
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Outline

5. other views of the boundary value problem
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the Dirac delta “function”

Definition
the Dirac delta function on [0, 1], centered at { € (0, 1), satisfies

0, X F£t

(St(X) = { . ?é

positive, x =t,

and ;
/ 5t(X) ax =1
0 v
@ picture:

@ the above is a fake definition ... do not believe it
@ the Dirac delta “function” is actually a positive measure 6;(x) dx
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the kernel for the BVP comes from Dirac delta functions

Theorem
for t € (0, 1), the solution of

—u"(x) =6(x), u(0)=u(1)=0
is k(x,t) = min{x, t} — xt

Proof. Integrate twice, as usual:

v(x) = C— /OX 5:(5) ds = C — 1(g1(x)

X 0 x <t
= -1 =Cx—-1{7
u(x) OJr/0 C —1,1y(s)ds = Cx {X—h x>t
But:
0, 1<t

=C-(1—t
1—t, 1>t (=9

0_u(1)_C—{

soC=1-—tso:

U(X)_U_t)x_{o, x<t{x(1—t), X<t _ o .

x—t x>t |t1=x), x>t
@ this proof is valid if we interpret d;(x) dx as a measure
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physicist’s solution of the BVP

Corollary
for t € (0,1), the solution of

is u(x) = [ k(x, t)¢(t) dt where k(x, t) = min{x, t} — xt

“Proof.” The map from ¢ to the solution u is linear: u = L¢. Express ¢ as a linear combination of
delta functions:

’
600 = [ ot ct
Now apply L to both sides, to write the solution as a linear combination of solutions:
1
u() = (L)) = [ L) e
But from previous slide, L(6:(x)) = k(x, t). Thus

1 1
u(x) = /0 S(t)K(x, 1) dt = /0 K(x, 1)p(t) dit O

@ this “proof” becomes valid in the theory of distributions or generalized functions, due to
L. Schwartz
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approximation of the BVP
@ suppose that an integral operator L : C(]0,1]) — C([0, 1]) has formula

1
(Lo)(x) = /0 K(x. (1) ot

@ neither L nor k is a matrix, but could we approximate them by a matrix?
@ one answer: finite elements
@ picture of a test (hat) function ¢(x) = ¥x(x) and the output Ly:
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solution of the BVP by Fourier series

Lemma
for n € N, the solution of

u”(x) = sin(nmx), u(0)=u(1) =
is u(x)=

W Sin(m'rX)
™

@ the proof is very easy?
@ suppose data ¢(x) is written as a Fourier sine series (Chapter 4):

X) = i Cnsin(nmx)
n=1

@ then, by linearity of ()", the solution of the BVP is

oo
E SI n n’iT X
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solution of the BVP by Fourier series 2

@ we have ¢(x) = >, cysin(nmx) and u(x) = 37, - sin(nmx)
@ but Fourier says: +— Chapter 4

Cn = 2/1 sin(nrt)o(t) ot
0

@ thus, assuming we may exchange the sums:

e 1
ux) =3 % (/O sin(nrt)o(1) dt) sin(nx)

n=1
1 [ee]
:/O [Zr:ﬂsin(nwt)sin(nﬂx)] ¢(t) dt
n=1

@ guess what! we have the kernel again:
k(x,t) = min{x t‘}—xz‘—f:i in(nmt) sin(nmx)
5 = min 5 = : n2ﬂ'2 sin{Nml)sin{ N
n=
@ and again u(x) = f01 k(x, t)o(t) dt
Boundary value problems and integral operators Spring 2026 36/37



theory in weeks 2 & 3: Chapter 2 in Saxe

to define:

open and closed sets in metric spaces
compact sets in metric spaces
equicontinuity of subsets of C([a, b])
separable metric spaces

complete metric spaces

Hilbert and Banach spaces

to prove:
@ Heine-Borel theorem
@ Arzela-Ascoli theorem
@ C([a, b]) with || - || is complete (thus a Banach space)

@ Assignment 2 is posted at bueler.github.io/fa
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