Assignment 7

Due Monday 22 April 2024 (revised!)

This Assignment is based on sections 3.2, 3.3, 3.4, 4.1, and 4.2 of our textbook, Borthwick (2020) *Spectral Theory: Basic Concepts and Applications*, Springer.

PLEASE DO THE FOLLOWING EXERCISES.

P33. The adjoint of a linear map between complex Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 can be defined. Here we consider bounded operators only. For $T \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ the *(Hilbert space) adjoint* T^* is the unique linear map $T^* \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_1)$ so that

 $\langle v, Tu \rangle_2 = \langle T^*v, u \rangle_1$ for all $u \in \mathcal{H}_1$ and $v \in \mathcal{H}_2$.

When $\mathcal{H}_1 = \mathcal{H}_2$ this is the same definition as in section 3.2.

(a) Show that $(T^*)^* = T$ and that $(ST)^* = T^*S^*$.

(b) Show that if T is invertible with $T^{-1} \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_1)$ then $(T^*)^{-1} = (T^{-1})^*$.

(c) Suppose that $Q \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ satisfies $Q^*Q = I_1$ and $QQ^* = I_2$ where I_i is the identity map on \mathcal{H}_i . Show that Q is unitary.

Hints. For part (a) assume that $S \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_3)$. For part (b) use $TT^{-1} = I_2$ and $T^{-1}T = I_1$, and then apply (a). For part (c) use the definition on page 17 of the text: *U* is *unitary* if it is a bijective isometry.

P34. (a) Suppose $\{\phi_n\}$ is an orthonormal basis of a complex Hilbert space \mathcal{H} . Define the map $Q \in \mathcal{L}(\mathcal{H}, \ell^2)$, where $\ell^2 = \ell^2(\mathbb{N})$, by $(Qf)_n = \langle \phi_n, f \rangle_{\mathcal{H}}$ for $f \in \mathcal{H}$. Give a formula for Q^* . Show that Q is unitary.

(b) Let *T* be a closed (unbounded) linear operator on \mathcal{H} . Suppose $\phi_n \in \mathcal{D}(T)$ and $T\phi_n = \lambda_n\phi_n$, for $n \in \mathbb{N}$ and $\lambda_n \in \mathbb{C}$. If $\{\phi_n\}$ is an orthonormal basis of \mathcal{H} then *Q* in part (a) unitarily diagonalizes *T* in the sense that

$$QTQ^* = M$$

defines an unbounded multiplication operator on ℓ^2 .

Hints. For part (a) you may use P33(c), though that is not the only way. For part (b), make sure to define the domain of M and the action of M on elements of $\mathcal{D}(M)$.

P35. (a) Let $\mathcal{H} = L^2(\mathbb{R})$. Define $(M_{x^2}v)(x) = x^2v(x)$, an unbounded multiplication operator with domain $\mathcal{D}(M_{x^2}) = \{v \in \mathcal{H} : x^2v(x) \in \mathcal{H}\}$. Define (Tv)(x) = v''(x), an unbounded second derivative operator with domain $\mathcal{D}(T) = C_0^{\infty}(\mathbb{R})$. Show that these operators have no eigenvalues.

(b) Let $\mathcal{H} = L^2(0, \pi)$. Define $(M_{x^2} v)(x) = x^2 v(x)$, a multiplication operator with domain $\mathcal{D}(M_{x^2}) = \{v \in \mathcal{H} : x^2 v(x) \in \mathcal{H}\}$. Show that M_{x^2} is actually bounded, but that it has no eigenvalues.

(c) Let $\mathcal{H} = L^2(0, \pi)$. Define (Tv)(x) = v''(x), a second derivative operator with domain $\mathcal{D}(T) = \{v \in \mathcal{H} : v \in C^2[0, \pi] \text{ and } v(0) = v(\pi) = 0\}$. Show that T is unbounded, and that $\phi_k(x) = \sin(kx)$ is an eigenfunction for any $k \in \mathbb{N}$. Find the corresponding eigenvalues.

Hints. For part (a) you may use results in Example 3.3. For part (b) you may use the result in Example 2.8.

Comments. You do not need to prove self-adjointness or spectrum. However, textbook Examples 3.2, 3.5, and 3.22 show both M_{x^2} are self-adjoint. Example 3.26 shows that *T* in part (a) is essentially self-adjoint. Example 3.20 sketches why *T* in part (c) is essentially self-adjoint. See Theorems 4.5 for the spectrum of both M_{x^2} , thus by unitary-equivalence for the closure of *T* in part (a) also. Use P34(b) for the spectrum of the closure of *T* in part (b).

P36. Let \mathcal{H} be a complex Hilbert space. Recall that if A is a symmetric operator on \mathcal{H} then $v \in \mathcal{D}(A)$ implies $\langle v, Av \rangle \in \mathbb{R}$. We will write A - z for A - zI.

(a) Suppose *A* is a symmetric operator on \mathcal{H} . Show that if $z \in \mathbb{C}$ then

$$\operatorname{Im} \langle v, (A-z)v \rangle = -\operatorname{Im}(z) ||v||^2.$$

(b) If furthermore $z \in \mathbb{C}$ is strictly complex, i.e. $\text{Im} z \neq 0$, then

$$||v|| \le \frac{||(A-z)v||}{|\operatorname{Im}(z)|}$$

In this situation, show that A - z is injective.

P37. Let \mathcal{H} be a complex Hilbert space. Recall that $\mathcal{L}(\mathcal{H})$ is a normed vector space with norm $||T|| = \sup_{||v||=1} ||Tv||$, and also recall Theorem 2.10.

(a) Suppose that $T \in \mathcal{L}(\mathcal{H}), z \in \mathbb{C}$, and |z| > ||T||. Show that

$$\sum_{k=0}^{\infty} z^{-k} T^k$$

converges to $S \in \mathcal{L}(\mathcal{H})$.

(b) Under the same assumptions, show that

$$S(T - zI) = (T - zI)S = -zI.$$

Explain why this shows $z \in \rho(T)$.