Assignment 4

Due Wednesday 6 March 2024

This Assignment is based primarily on sections 2.6, 2.7, and 3.1 of our textbook, Borthwick (2020) Spectral Theory: Basic Concepts and Applications, Springer.

Please do the following exercises.

P19. This is Exercise 2.10, but clarified. One way to show (a) is to argue that range $(P)=$ $\operatorname{ker}(Q)$ for some bounded operator $Q \in \mathcal{L}(\mathcal{H})$ built from P.

Suppose $P \in \mathcal{L}(\mathcal{H})$ satisfies $P^{2}=P$ and $\langle P v, w\rangle=\langle v, P w\rangle$ for all $v, w \in \mathcal{H}$.
(a) Show that range (P) is a closed subspace of \mathcal{H}.
(b) Show that $\mathcal{H}=\operatorname{range}(P) \oplus \operatorname{ker}(P)$.

P20. This is Exercise 2.6, asking for the proof of Corollary 2.29. Note that "bounded sesquilinear form" is defined on page 27. Observe that both $\langle\cdot, \cdot\rangle$ and $\eta(\cdot, \cdot)$ are conjugate linear in the first spot. Prove the linearity and boundedness of T. Hint: Start by showing that for fixed $w \in \mathcal{H}$, the functional $\ell(v)=\overline{\eta(v, w)}$ is in \mathcal{H}^{\prime}.

Given a bounded sesquilinear form $\eta: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$, show that there is a unique operator $T \in \mathcal{L}(\mathcal{H})$ so that

$$
\eta(v, w)=\langle v, T w\rangle
$$

for all $v, w \in \mathcal{H}$.
P21. Carefully prove Corollary 2.36, Parseval's theorem and equality, from Theorems 2.34 and 2.35.

P22. In Example 2.32 on page 28 our textbook casually says that a "standard argument using the Dirichlet kernel" shows that a certain set of orthogonal complex exponentials is in fact a basis. This exercise begins this substantial argument, which was perhaps the greatest triumph of 19th century analysis. Specifically, we define the Dirichlet kernel and look at its properties. Note that $\mathcal{H}=L^{2}(-\pi, \pi)$ here, instead of $L^{2}(0,2 \pi)$ as in the book, but this is a mere convenience.
(a) Let $\phi_{k}(\theta)=\frac{1}{\sqrt{2 \pi}} e^{i k \theta}$ for $k \in \mathbb{Z}$. Observe that these functions are continuous on $[-\pi, \pi]$, thus in $\mathcal{H}=L^{2}(-\pi, \pi)$. Show that $\left\{\phi_{k}\right\}$ is an orthonormal set.
(b) For $n \in \mathbb{N}$, let $D_{n}(\theta)=\sum_{j=-n}^{n} e^{i j \theta}$ be the Dirichlet kernel. Show that $D_{n}(0)=$ $2 n+1$ (easy!). For $\theta \neq 0$ show that

$$
D_{n}(\theta)=\frac{\sin ((n+1 / 2) \theta)}{\sin (\theta / 2)}
$$

(Hint. Use a geometric series argument, and the fact that $\sin \alpha=\left(e^{i \alpha}-e^{-i \alpha}\right) /(2 i)$.)
(c) Use a computer to plot $D_{2}(\theta), D_{8}(\theta)$, and $D_{20}(\theta)$ in a single figure, on the interval $-\pi \leq \theta \leq \pi$.
(d) Compute $\int_{-\pi}^{\pi} D_{n}(\theta) d \theta$. Conjecture what the integral $\int_{-\pi}^{\pi} D_{n}(\theta) f(\theta) d \theta$ yields when $f(x)$ is continuous at $x=0$ and n is large.
(e) Show that if $f \in \mathcal{H}=L^{2}(-\pi, \pi)$ then

$$
\int_{-\pi}^{\pi} D_{n}(x-\theta) f(\theta) d \theta=2 \pi \sum_{j=-n}^{n}\left\langle\phi_{j}, f\right\rangle \phi_{j}(x)
$$

Argue that therefore

$$
\left(P_{n} f\right)(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{n}(x-\theta) f(\theta) d \theta
$$

is the orthogonal projection of $f \in \mathcal{H}$ onto $\operatorname{span}\left\{\phi_{-n}, \ldots, \phi_{n}\right\}$. (Hint. Compare (2.30).)
P23. Hints. Use Cauchy-Schwarz for part (a). An example for part (b) can be built from a power of the polar coordinate $r=\left(x^{2}+y^{2}\right)^{1 / 2}$.
(a) Let $\Omega=(0,1)^{2} \subset \mathbb{R}^{2}$. Suppose $K \in L^{2}(\Omega)$, that is,

$$
\int_{0}^{1} \int_{0}^{1}|K(x, y)|^{2} d x d y<\infty
$$

Show that the integral operator with kernel K, namely

$$
\left(T_{K} f\right)(x)=\int_{0}^{1} K(x, y) f(y) d y
$$

is linear and bounded on $\mathcal{H}=L^{2}(0,1)$. That is, $T_{K} \in \mathcal{L}(\mathcal{H})$.
(b) Find $K \in L^{2}(\Omega)$ which is not a bounded function.
(c) Fix a finite sequence $a_{j} \in \mathbb{C}, j=1, \ldots, n$. Let

$$
K_{a}(x, y)=\sum_{j=1}^{n} a_{j} e^{i 2 \pi j(x-y)}
$$

This is a continuous and bounded function and thus $K_{a} \in L^{2}(\Omega)$. Find all of the eigenvalues and eigenfunctions of the operator $T_{K_{a}} \in \mathcal{L}(\mathcal{H})$.

