Assignment 2

Due Monday 12 February 2024 (revised!), at the start of class

This Assignment is based primarily sections 2.3, 2.4, 2.6, and 2.7 of our textbook, ${ }^{1}$ but see also sections 2.1 and 2.2 , and the handout.
Do The following exercises.
P8. This is Exercise 2.1. Note that "bounded" is defined on page 9 and "continuous" was defined on the handout.
For normed vector spaces \mathcal{V} and \mathcal{W}, prove that a linear map $T: \mathcal{V} \rightarrow \mathcal{W}$ is bounded if and only if it is continuous.

P9. This is Exercise 2.5. Note that $\|T\|$ is defined on page 9.
For $T \in \mathcal{L}(\mathcal{H})$, prove that

$$
\|T\|=\sup _{v, w \neq 0} \frac{|\langle v, T w\rangle|}{\|v\|\|w\|}
$$

P10. This is Exercise 2.7. Weak convergence of a sequence in \mathcal{H} is defined on page 27. You may use Corollary 2.36.
Let \mathcal{H} be a Hilbert space and suppose $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ is an orthonormal set. Prove that the sequence $\left(e_{n}\right)$ converges weakly to 0 .

P11. Prove directly, without using the Heine-Borel theorem, that the set

$$
K=\{0\} \cup\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \subset \mathbb{R}
$$

is compact in the usual topology on \mathbb{R}.

[^0]P12. This example is so important that I did it in class and I want you to write out the details! You may use, without comment, the standard properties of integration, as they apply to functions in $L^{1}(0,1)$.
(a) Consider the Banach space $\mathcal{V}=L^{1}(0,1)$ and the linear operator

$$
(A f)(x)=\int_{0}^{x} f(t) d t
$$

for $f \in \mathcal{V}$. Show that $A f \in \mathcal{V}$. Also show A is bounded.
By part (a), we may write $A \in \mathcal{L}(\mathcal{V})$.
(b) Show that, in fact, if $f \in \mathcal{V}$ then $A f$ is a continuous function on $[0,1]$. (Show this directly, even though it is also stated in the handout as a fact. You may use result (A.6) in Appendix A, which is nearly stating what you are trying to prove.) Observe that $(A f)(0)=0$.
In the next part, you may use, without comment, the form of the Fundamental Theorem of Calculus in the handout. You may also use the fact that the only continuous functions $y(x)$ satisfying $y^{\prime}(x)=\alpha y(x)$, for $\alpha \in \mathbb{C}$, on x in any non-trivial interval of the real line, are the functions $y(x)=c e^{\alpha x}$ for $c \in \mathbb{C}$.
(c) By definition, $f \in \mathcal{V}$ is an eigenfunction of A if $f \neq 0$ and there is $\lambda \in \mathbb{C}$ so that $A f=\lambda f$. 2 If f is an eigenfunction of A then we call the corresponding λ the eigenvalue. Show that A has no eigenvalues.

[^1]
[^0]: ${ }^{1}$ D. Borthwick (2020). Spectral Theory: Basic Concepts and Applications, Springer

[^1]: ${ }^{2}$ Pay attention here. " $f \neq 0$ " means f is not the zero vector of \mathcal{V}. Which means what about the pointwise values $f(x)$? Also, " $A f=\lambda f^{\prime \prime}$ means what? (Think about almost everywhere.)

