Assignment 1

Due Friday 26 January 2024, at the start of class (revised & corrected)

This Assignment is based primarily on the "Definitions and facts" handout, but also on sections 2.1 and 2.2 of our textbook

D. Borthwick (2020). *Spectral Theory: Basic Concepts and Applications,* Springer

DO THE FOLLOWING EXERCISES.

P1. Suppose $(V, \| \cdot \|)$ is a normed vector space. Let $Y \subset V$ be any finite set of points. Show that *Y* is closed.

P2. Let $(V, \|\cdot\|)$ be a normed vector space. Let $S_1 = \{x \in V : \|x\| = 1\}$. Recalling that $B_1 = B_1(0)$ is the open ball of radius one centered at the origin, show S_1 is exactly the boundary set of B_1 : $\partial B_1 = S_1$.

P3. Let X_k be the set of RNA sequences of length k. All you need to know about such things is that an RNA sequence has one character from $\{A, C, G, U\}$ in each location. That is, an element of X_k is a string of k letters, each of which is A, C, G, U. Let $\delta(a, b) = 0$ if a = b and $\delta(a, b) = 1$ if $a \neq b$. For $x, y \in X_k$ let

$$d(x,y) = \sum_{j=1}^{k} \delta(x_j, y_j)$$

where x_j is the *j*th letter in the RNA sequence *x*.

(a) Show rigorously that (X_k, d) is a metric space. That is, show d(x, y) computes a valid distance between any two RNA sequences of the same length.

(b) Can (X_k, d) be regarded as a subset of a real normed vector space $(V, \|\cdot\|)$? Argue, at least informally, that this is true. You will need to construct *V* and sketch the embedding. Formally, one says that there is an *isometric* embedding $X_k \hookrightarrow V$. (*Hint*. I used $\|\cdot\|_{\infty}$ on each letter.)

P4. Show that a convergent sequence in a metric space cannot converge to two different limits.

P5. (a) Is
$$f(x) = \frac{1}{\sqrt{x}}$$
 in $L^1(0,1)$? In $L^2(0,1)$?

(b) Let $s \ge 0$ and define $g_s(x) = \frac{1}{x^s}$. For $1 \le p \le \infty$, determine exactly which spaces $L^p(0,1)$ contain g_s .

P6. The definition of the spaces $\ell^p = \ell^p(\mathbb{N})$ in section 2.2 of the textbook is too terse. This problem at least includes a clear definition for $p = \infty$. Make sure to observe that infinite sequences are the same as functions from \mathbb{N} to \mathbb{C} .

The normed vector space $(\ell^{\infty}, \|\cdot\|_{\infty})$ is the set of infinite sequences $a = (a_k) = (a_1, a_2, a_3, ...)$ with complex entries $(a_k \in \mathbb{C})$ which are bounded, that is, so that there is M > 0 so that $|a_k| < M$ for all $k \in \mathbb{N}$. The norm is the supremum of the absolute values of the entries:

$$||a||_{\infty} = \sup_{k=1,2,\dots} |a_k|.$$

(a) Show that $(\ell^{\infty}, \|\cdot\|_{\infty})$ is a Banach space.

(b) Consider the set of complex-valued sequences which have a limit of zero:

$$Y = \{(a_k) : a_k \to 0\}$$

Show that $Y \subset \ell^{\infty}$.

(c) Show that $(Y, \|\cdot\|_{\infty})$ is a Banach space. (*Hint.* You may do this directly or use part (a). For less than obvious reasons, this subset *Y* is often instead called c_0 .)

P7. For any set *X* and measure μ , the normed vector space $L^1(X, d\mu)$ is defined in section 2.2 of our textbook. For such a space the Minkowski (triangle) inequality (2.5) can be proved directly, without reference to Appendix A.2. Do so.