\leftarrow requires: $\mathcal{D}(A^*) = \mathcal{D}(A)$

Definitions and facts leading to the spectral theorem

Page numbers are for Borthwick, Spectral Theory Springer 2020.

Notation: $\forall =$ "for all", $\exists =$ "there exists", \mathcal{H} is a separable Hilbert space, T is an (unbounded) operator on \mathcal{H} , T - z = T - zI, $U \in \mathcal{L}(\mathcal{H})$ is a unitary operator, and A is an (unbounded) self-adjoint operator on \mathcal{H} .

def p 36 an *operator* T is a linear map on \mathcal{H} with a dense domain $\mathcal{D}(T)$

def p 38 the *adjoint* of T is an operator T^* , with domain

$$\mathcal{D}(T^*) = \{ v \in \mathcal{H} : \ell(u) = \langle v, Tu \rangle \in \mathcal{L}(\mathcal{H}, \mathbb{C}) \},\$$

so that $\langle T^*v, u \rangle = \langle v, Tu \rangle$ for all $v \in \mathcal{D}(T^*)$, $u \in \mathcal{D}(T)$

- def p 41 an operator is *closed* if its graph is a closed subset of $\mathcal{H} \times \mathcal{H}$
- <u>**fact**</u> p 43 the adjoint T^* is always closed

<u>fact</u> p 44 $T = T^{**}$ if T is closed

- <u>**fact**</u> p 44 T closable $\iff \mathcal{D}(T^*)$ dense
- <u>fact</u> p 44 closed graph theorem. when $\mathcal{D}(T) = \mathcal{H}$: T closed $\iff T \in \mathcal{L}(\mathcal{H})$

def p 46 *T* has bounded inverse: $\exists T^{-1} \in \mathcal{L}(\mathcal{H})$ s.t. $TT^{-1} = I$ on \mathcal{H} and $T^{-1}T = I$ on $\mathcal{D}(T)$

- **<u>fact</u>** p 46 $T^{-1} \in \mathcal{L}(\mathcal{H}) \iff T$ is closed, *T* is bounded away from zero, and range(*T*) dense
- **def** p 47 *A* is *self-adjoint* if $A^* = A$

def p 47 *T* is symmetric if $\langle Tu, v \rangle = \langle u, Tv \rangle$ for all $v \in \mathcal{D}(T)$

- <u>fact</u> p 47 T is symmetric $\implies T$ is closable
- <u>**fact**</u> p 47 A is self-adjoint $\implies A$ is symmetric
- **def** p 47 *T* is *positive* if $\langle v, Tv \rangle \ge 0$ for all $v \in \mathcal{D}(T)$
- **def** p 67 *eigenvalue* and *eigenvector*: $T\phi = \lambda\phi$ for $\phi \in \mathcal{D}(T) \setminus \{0\}$ and $\lambda \in \mathbb{C}$
- **def** p 68 *spectrum*: the set $\sigma(T) = \{\lambda \in \mathbb{C} : T \lambda \text{ does not have a bounded inverse}\}$
- **def** p 68 *resolvent set*: $\rho(T) = \mathbb{C} \setminus \sigma(T)$
- def p 68 if $z \in \rho(T)$ then $R_z = (T z)^{-1}$ is the *resolvent* operator
- **<u>fact</u>** p 68 if *T* is not closed then $\sigma(T) = \mathbb{C}$
- **<u>fact</u>** p 69 if *T* is bounded then $\sigma(T) \subset B_{||T||}(0)$

<u>fact</u> p 69 $\sigma(T^*) = \sigma(T)^*, \rho(T^*) = \rho(T)^*, \text{ and } [(T-z)^{-1}]^* = (T-\overline{z})^{-1}$

- <u>fact</u> p 71 for $f : X \to \mathbb{C}$ measurable and M_f a multiplication operator on $L^2(X, d\mu)$: $\lambda \in \mathbb{C}$ is an eigenvalue of $M_f \iff \mu(f^{-1}(\lambda)) > 0$
- **def** p 71 ess-range $f = \{z \in \mathbb{C} : \mu(f^{-1}(B_{\epsilon}(z))) > 0 \forall \epsilon > 0\}$

<u>fact</u> p 71 $\sigma(M_f) = \text{ess-range } f$

- <u>**fact</u> p 71** $\|(M_f z)^{-1}\| = \left(\operatorname{dist}\left(z, \sigma(M_f)\right)\right)^{-1}$ </u>
- <u>fact</u> p 83 if T closed then $\rho(T)$ is open and $R_z = (T z)^{-1}$ is analytic in z on $\rho(T)$
- <u>**fact**</u> p 85 if *T* is bounded then $\sigma(T) \neq \emptyset$

def p 85 spectral radius: $r(T) = \sup_{z \in \sigma(T)} |z|$

<u>fact</u> p 85 if *T* bounded then $r(T) \le ||T||$

<u>fact</u> p 86 $\sigma(A) \subset \mathbb{R}$

 \leftarrow **recall notation:** *A* is self-adjoint

 $\leftarrow \textbf{thus:} f(U)g(U) = g(U)f(U)$

 $\underline{\mathbf{fact}} \ \mathbf{p} \ \mathbf{87} \quad z \in \sigma(A) \iff \exists \{u_n\} \subset \mathcal{D}(A) \ \mathbf{s.t.} \ \|u_n\| = 1 \ \mathbf{and} \ \|(A-z)u_n\| \to 0$

def p 17 *U* is *unitary* if it is bijective and an isometry (i.e. $||Ux|| = ||x|| \forall x \in \mathcal{H}$)

<u>fact</u> p 17 U unitary \iff U bijective & $\langle Ux, Uy \rangle = \langle x, y \rangle \ \forall x, y \in \mathcal{H}$

<u>**fact</u>** p 102 U unitary $\iff U \in \mathcal{L}(\mathcal{H})$ and $UU^* = U^*U = I$ </u>

def p 102 *functional calculus*: on *T* we can apply a function $f : \mathbb{C} \to \mathbb{C}$ to create an operator f(T)

def p 102 $\mathbb{S} = \{z \in \mathbb{C} : |z| = 1\}$ and $C(\mathbb{S}) = \{f : \mathbb{S} \to \mathbb{C} \mid f \text{ is continuous (and periodic)}\}$

- <u>fact</u> p 103 **continuous functional calculus for unitaries.** fix U unitary. there is a map $C(\mathbb{S}) \to \mathcal{L}(\mathcal{H})$, $f \mapsto f(U)$ so that
 - (0) if f(z) = 1 then f(U) = I

(a)
$$f(U)^* = \overline{f}(U)$$

(b)
$$f(U)g(U) = (fg)(U)$$

(c) if
$$f \ge 0$$
 then $f(U) \ge 0$

(d)
$$||f(U)|| = \sup_{z \in \mathbb{S}} |f(z)|$$

- **def** p 105 if *X* is a metric space then $C(X) = \{f : X \to \mathbb{C} \text{ continuous}\}$
- **def** p 105 $\beta: C(X) \to \mathbb{C}$ is positive if $f \ge 0 \implies \beta(f) \ge 0$
- **<u>fact</u>** p 105 **Riesz representation theorem.** suppose *X* is a compact metric space and $\beta : C(X) \to \mathbb{C}$ is linear and positive. there is a unique positive Borel measure on *X* so that

$$\beta(f) = \int_X f \, d\mu \qquad \forall f \in C(X)$$

- def p 105 for U unitary and $v \in \mathcal{H}$ the spectral measure is μ_v on \mathbb{S} so that $\langle v, f(U)v \rangle = \int_{\mathbb{S}} f d\mu_v$
- <u>fact</u> p 106 for μ from the Riesz representation theorem, $C(X) \subset L^2(X, \mu)$ is dense
- <u>fact</u> p 107 **spectral theorem for unitaries.** if \mathcal{H} is a separable Hilbert space and $U \in \mathcal{L}(\mathcal{H})$ is unitary then there is a countable collection of finite measures ν_k on \mathbb{S} , and a measurable space $(Y, \nu) = \bigcup_k (\mathbb{S}, \nu_k)$, and a unitary map $W : L^2(Y, \nu) \to \mathcal{H}$, so that

$$W^{-1}UW = M_{\eta}$$

where $M_{\eta} \in \mathcal{L}(L^2(Y, \nu))$ is a bounded multiplication operator and $\eta : Y \to \mathbb{C}$ is equal to $\eta(z) = z$ on each copy of \mathbb{S}

- **def** p 108 the Cayley transform $\gamma(z) = \frac{z-i}{z+i}$ maps \mathbb{R} to \mathbb{S}
- <u>fact</u> p 108 **spectral theorem (multiplication operator form).** if \mathcal{H} is a separable Hilbert space and A is self-adjoint on \mathcal{H} then there is a countable collection of finite Borel measures μ_k on \mathbb{R} , and a measurable space $(X, \mu) = \bigcup_k (\mathbb{R}, \mu_k)$, and a unitary map $Q : L^2(X, \mu) \to \mathcal{H}$, so that

$$Q^{-1}AQ = M_{\alpha}$$

where $M_{\alpha} \in \mathcal{L}(L^2(X, \mu))$ is a (generally unbounded) multiplication operator and α : $X \to \mathbb{R}$ is equal to $\alpha(x) = x$ on each copy of \mathbb{R}