Definitions and facts leading to the spectral theorem

Page numbers are for Borthwick, Spectral Theory Springer 2020.
Notation: $\forall=$ "for all", $\exists=$ "there exists", \mathcal{H} is a separable Hilbert space, T is an (unbounded) operator on $\mathcal{H}, T-z=T-z I, U \in \mathcal{L}(\mathcal{H})$ is a unitary operator, and A is an (unbounded) self-adjoint operator on \mathcal{H}.
def p 36 an operator T is a linear map on \mathcal{H} with a dense domain $\mathcal{D}(T)$
def p 38 the adjoint of T is an operator T^{*}, with domain

$$
\mathcal{D}\left(T^{*}\right)=\{v \in \mathcal{H}: \ell(u)=\langle v, T u\rangle \in \mathcal{L}(\mathcal{H}, \mathbb{C})\}
$$

so that $\left\langle T^{*} v, u\right\rangle=\langle v, T u\rangle$ for all $v \in \mathcal{D}\left(T^{*}\right), u \in \mathcal{D}(T)$
def p 41 an operator is closed if its graph is a closed subset of $\mathcal{H} \times \mathcal{H}$
fact p 43 the adjoint T^{*} is always closed
fact $\mathrm{p} 44 \quad T=T^{* *}$ if T is closed
fact $\mathrm{p} 44 \quad T$ closable $\Longleftrightarrow \mathcal{D}\left(T^{*}\right)$ dense
fact p $44 \quad$ closed graph theorem. when $\mathcal{D}(T)=\mathcal{H}: T$ closed $\Longleftrightarrow T \in \mathcal{L}(\mathcal{H})$
def $\mathrm{p} 46 \quad T$ has bounded inverse: $\exists T^{-1} \in \mathcal{L}(\mathcal{H})$ s.t. $T T^{-1}=I$ on \mathcal{H} and $T^{-1} T=I$ on $\mathcal{D}(T)$
fact $\mathrm{p} 46 \quad T^{-1} \in \mathcal{L}(\mathcal{H}) \Longleftrightarrow T$ is closed, T is bounded away from zero, and range (T) dense
$\operatorname{def} \mathrm{p} 47 \quad A$ is self-adjoint if $A^{*}=A$
\leftarrow requires: $\mathcal{D}\left(A^{*}\right)=\mathcal{D}(A)$
def $\mathrm{p} 47 \quad T$ is symmetric if $\langle T u, v\rangle=\langle u, T v\rangle$ for all $v \in \mathcal{D}(T)$
fact $\mathrm{p} 47 \quad T$ is symmetric $\Longrightarrow T$ is closable
fact $\mathrm{p} 47 \quad A$ is self-adjoint $\Longrightarrow A$ is symmetric
def $\mathrm{p} 47 \quad T$ is positive if $\langle v, T v\rangle \geq 0$ for all $v \in \mathcal{D}(T)$
def p 67 eigenvalue and eigenvector: $T \phi=\lambda \phi$ for $\phi \in \mathcal{D}(T) \backslash\{0\}$ and $\lambda \in \mathbb{C}$
def p 68 spectrum: the set $\sigma(T)=\{\lambda \in \mathbb{C}: T-\lambda$ does not have a bounded inverse $\}$
def p 68 resolvent set: $\rho(T)=\mathbb{C} \backslash \sigma(T)$
def p 68 if $z \in \rho(T)$ then $R_{z}=(T-z)^{-1}$ is the resolvent operator
fact p 68 if T is not closed then $\sigma(T)=\mathbb{C}$
fact $\mathrm{p} 69 \quad$ if T is bounded then $\sigma(T) \subset B_{\|T\|}(0)$
fact $\mathrm{p} 69 \quad \sigma\left(T^{*}\right)=\sigma(T)^{*}, \rho\left(T^{*}\right)=\rho(T)^{*}$, and $\left[(T-z)^{-1}\right]^{*}=(T-\bar{z})^{-1}$
fact p 71 for $f: X \rightarrow \mathbb{C}$ measurable and M_{f} a multiplication operator on $L^{2}(X, d \mu)$:
$\lambda \in \mathbb{C}$ is an eigenvalue of $M_{f} \Longleftrightarrow \mu\left(f^{-1}(\lambda)\right)>0$
def $\mathrm{p} 71 \quad$ ess-range $f=\left\{z \in \mathbb{C}: \mu\left(f^{-1}\left(B_{\epsilon}(z)\right)\right)>0 \forall \epsilon>0\right\}$
fact $\mathrm{p} 71 \quad \sigma\left(M_{f}\right)=$ ess-range f
$\underline{\text { fact } \mathrm{p} 71 \quad\left\|\left(M_{f}-z\right)^{-1}\right\|=\left(\operatorname{dist}\left(z, \sigma\left(M_{f}\right)\right)\right)^{-1}, ~(1) ~}$
fact p 83 if T closed then $\rho(T)$ is open and $R_{z}=(T-z)^{-1}$ is analytic in z on $\rho(T)$
fact p 85 if T is bounded then $\sigma(T) \neq \emptyset$
def p 85 spectral radius: $r(T)=\sup _{z \in \sigma(T)}|z|$
fact p 85 if T bounded then $r(T) \leq\|T\|$
fact $p 86$
$\sigma(A) \subset \mathbb{R}$
\leftarrow recall notation: A is self-adjoint
fact p 87
$z \in \sigma(A) \Longleftrightarrow \exists\left\{u_{n}\right\} \subset \mathcal{D}(A)$ s.t. $\left\|u_{n}\right\|=1$ and $\left\|(A-z) u_{n}\right\| \rightarrow 0$
def p 17
U is unitary if it is bijective and an isometry (i.e. $\|U x\|=\|x\| \forall x \in \mathcal{H}$)
fact $\mathrm{p} 17 U$ unitary $\Longleftrightarrow U$ bijective $\&\langle U x, U y\rangle=\langle x, y\rangle \forall x, y \in \mathcal{H}$
fact p $102 U$ unitary $\Longleftrightarrow U \in \mathcal{L}(\mathcal{H})$ and $U U^{*}=U^{*} U=I$
def p 102
def p 102
fact p 103 $\mathbb{S}=\{z \in \mathbb{C}:|z|=1\}$ and $C(\mathbb{S})=\{f: \mathbb{S} \rightarrow \mathbb{C} \mid f$ is continuous (and periodic) $\}$ continuous functional calculus for unitaries. fix U unitary. there is a map $C(\mathbb{S}) \rightarrow \mathcal{L}(\mathcal{H})$, $f \mapsto f(U)$ so that
(0) if $f(z)=1$ then $f(U)=I$
(a) $f(U)^{*}=\bar{f}(U)$
(b) $f(U) g(U)=(f g)(U) \quad \leftarrow$ thus: $f(U) g(U)=g(U) f(U)$
(c) if $f \geq 0$ then $f(U) \geq 0$
(d) $\|f(U)\|=\sup _{z \in \mathbb{S}}|f(z)|$
def p 105 if X is a metric space then $C(X)=\{f: X \rightarrow \mathbb{C}$ continuous $\}$
def $\mathrm{p} 105 \beta: C(X) \rightarrow \mathbb{C}$ is positive if $f \geq 0 \Longrightarrow \beta(f) \geq 0$
$\underline{\text { fact }} \mathbf{p} 105$ Riesz representation theorem. suppose X is a compact metric space and $\beta: C(X) \rightarrow \mathbb{C}$ is linear and positive. there is a unique positive Borel measure on X so that

$$
\beta(f)=\int_{X} f d \mu \quad \forall f \in C(X)
$$

def p 105
fact p 106
for U unitary and $v \in \mathcal{H}$ the spectral measure is μ_{v} on \mathbb{S} so that $\langle v, f(U) v\rangle=\int_{\mathbb{S}} f d \mu_{v}$ for μ from the Riesz representation theorem, $C(X) \subset L^{2}(X, \mu)$ is dense
fact p 107
spectral theorem for unitaries. if \mathcal{H} is a separable Hilbert space and $U \in \mathcal{L}(\mathcal{H})$ is unitary then there is a countable collection of finite measures ν_{k} on \mathbb{S}, and a measurable space $(Y, \nu)=\cup_{k}\left(\mathbb{S}, \nu_{k}\right)$, and a unitary map $W: L^{2}(Y, \nu) \rightarrow \mathcal{H}$, so that

$$
W^{-1} U W=M_{\eta}
$$

where $M_{\eta} \in \mathcal{L}\left(L^{2}(Y, \nu)\right)$ is a bounded multiplication operator and $\eta: Y \rightarrow \mathbb{C}$ is equal to $\eta(z)=z$ on each copy of \mathbb{S}
def p 108 the Cayley transform $\gamma(z)=\frac{z-i}{z+i} \operatorname{maps} \mathbb{R}$ to \mathbb{S}
fact p 108
spectral theorem (multiplication operator form). if \mathcal{H} is a separable Hilbert space and A is self-adjoint on \mathcal{H} then there is a countable collection of finite Borel measures μ_{k} on \mathbb{R}, and a measurable space $(X, \mu)=\cup_{k}\left(\mathbb{R}, \mu_{k}\right)$, and a unitary map $Q: L^{2}(X, \mu) \rightarrow \mathcal{H}$, so that

$$
Q^{-1} A Q=M_{\alpha}
$$

where $M_{\alpha} \in \mathcal{L}\left(L^{2}(X, \mu)\right)$ is a (generally unbounded) multiplication operator and α : $X \rightarrow \mathbb{R}$ is equal to $\alpha(x)=x$ on each copy of \mathbb{R}

