Axioms of Quantum Mechanics	· · · · · · · · · · · · · · · · · · ·
· quantum mechanics is a model which people have	a mathematical invented to
fit (describe, quantify) experimental facts for	the
atomic particles, crystals,	etz.
• weirdly, it is the math Hilbert spaces and their	

resou	rces	- J'11 take	postulates (axióm	from here = postulate)
	wikipedia	page for	mathem	natical formulation
Ĩ	wikipedia axioms	page for	Dívac-	von Neumann
		Quantum T - 2013		- Mathematicians
G	any gra	aduate-lev	el QM	book?

postulate II:

Postulate II.a

Every measurable physical quantity \mathcal{A} is described by a Hermitian operator A acting in the state space \mathcal{H} . This operator is an observable, meaning that its eigenvectors form a basis for \mathcal{H} . The result of measuring a physical quantity \mathcal{A} must be one of the eigenvalues of the corresponding observable A.

· this will require some unpacking ...

• name some	measurable	physical	guantities ":
			· · · · · · · · · · · · · · · · · · ·
charge			
mass			
spin			
X-(500	int of posi	fm	
argula	r moment		
Momen	hm	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Cherge			
mag m	omet [time?]		· · · · · · · · · · · · · · · · · · ·

def: $A \in \mathcal{L}(\mathcal{H})$ is Hermitian (also known as self-adjoint) if (Av, w) = <v, Aw) for all v, we H or, equivalently, A*=A def: given BEZ(92), B*, the adjoint of B, is the operator B*EZCH so that (B*V, w) = <V, Bw) for all U, we ??

def: an observable is a	Hermitian
(self-adjoint) operator on 92	. .
·II.a makes the	
claim: the eigenvectors c	of an observable
form a basis for 94	
• Q: is this true? 1	. .
• The following lemma is the ca	sy part

lemma: suppose AEX(92) is hermitian (self-adjoint)	• •
and $A_{V_1} = \lambda_1 V_1$ and $A_{V_2} = \lambda_2 V_2$ for $V_1 \neq 0$, $V_2 \neq 0$,	• •
and $\lambda_1 \neq \lambda_2$. then $\langle v_1, v_2 \rangle = 0$ and $\lambda_c \in \mathbb{R}$.	· ·
$proof: 0 \ \chi_1 < v_1, v_1 \rangle = < v_1, \chi_1, v_1 \rangle = < v_1, Av_1 \rangle$	· · ·
$= \langle Av_{i}, v_{i} \rangle = \langle \lambda_{i} v_{i}, v_{i} \rangle$	· · ·
$\sum (\lambda_1 - \overline{\lambda}_1) \ v_1\ ^2 = 0 \text{so} \lambda_1 = \overline{\lambda}_1 \therefore \lambda_1 \in \mathbb{R} \text{ (also methy)}$	R)
$A_{1} = A_{2} = A_{1} = A_{2} = A_{2$	
$= \langle \gamma_1 \vee_1 \vee_2 \rangle = \langle \gamma_1 \vee_2 \vee_2 \rangle = \langle \gamma_1 \vee_1 \vee_2 \rangle = \langle \gamma_1 \vee_1 \vee_2 \rangle = \langle \gamma_1 \vee_1 \vee_2 \rangle = \langle \gamma_1 \vee_2 \vee_2 \vee_2 \vee_2 \rangle = \langle \gamma_1 \vee_1 \vee_2 \vee_2 \vee_2 \vee_2 \vee_2 \vee_2 \vee_2 \vee_2 \vee_2 \vee_2$	-0 家

Postulate II.a

I.a

again

Every measurable physical quantity \mathcal{A} is described by a Hermitian operator A acting in the state space \mathcal{H} . This operator is an observable, meaning that its eigenvectors form a basis for \mathcal{H} . The result of measuring a physical quantity \mathcal{A} must be one of the eigenvalues of the corresponding observable A.

• II.a says that when you observe a physical quantity in an experiment you get an eigenvalue of a hermitian (self-adjoint) A · thus experiments give real results

 $\cdot Q \colon A \in \chi(\mathcal{H})?$... do we want to require that A is bounded?

postulate II.b

Postulate II.b

When the physical quantity \mathcal{A} is measured on a system in a normalized state $|\psi\rangle$, the probability of obtaining an eigenvalue (denoted a_n for discrete spectra and α for continuous spectra) of the corresponding observable A is given by the *amplitude squared* of the appropriate wave function (projection onto corresponding eigenvector).

$$\mathbb{P}(a_n) = |\langle a_n | \psi \rangle|^2$$
 (Discrete, nondegenerate spectrum)
 $\mathbb{P}(a_n) = \sum_{i}^{g_n} |\langle a_n^i | \psi \rangle|^2$ (Discrete, degenerate spectrum)
 $d\mathbb{P}(\alpha) = |\langle \alpha | \psi \rangle|^2 d\alpha$ (Continuous, nondegenerate spectrum)

 $\gamma \in \mathcal{H}, \ \gamma \neq 0, \ \mathcal{H} = L^2(\mathbb{R})$ $\Rightarrow \quad \overrightarrow{\Psi} = \frac{\Psi}{\Pi \Psi \Pi} ,$ $\int [2\psi(x)]^2 dx = |(2\psi|)^2 = 1$ $\begin{array}{ccc} \left[e^{\pm i} & p(x) = 1 \overline{\gamma} G \right]^2 & \hbar m \\ \hline D & p \ge 0 \end{array}$ (2) $\int_{-\infty}^{\infty} p(x) dx = 1$

	and the second	spectrum"	versus	contin uou
speet	um"?		· · · · · · · · · · · ·	
Q.	that does			
	DP(a)	= <~ 74>	2 da //	· · · · · · · · · · · · · ·
	mean?	· · · · · · · · · · · · · · · · · · ·		

Dirac notatim: His an observable (the self-adjoint Divac: us : la la la $lan \in \mathcal{H}$ veg. $\mu_{\Lambda}^{(a)}$ $Av = a_{\Lambda}v$ $A|a_n\rangle = a_n|a_n\rangle$ $l(u) = \langle v, u \rangle \in \mathcal{H}'$ $\langle a_n \rangle \in \mathcal{H}'$ $\frac{\langle \left| \left| v \right| \right|^2}{\left| \left| v \right| \right|^2} = \langle v, v \rangle = 1$ <u>Sanlan</u> = 1 brucket $P_{u} = \langle v_{y} u \rangle v$ P= lan>(an)

• I.b says	that	for	"discre-	e spectru	" "
if $4e2$	descri	ibes Th	e Cum	ent stark	of
the system,	and i	f 174	11=1, t	hen	· · · · · · · · · · ·
Plobserval	ble quan	hty Q	yrelds	measured	
· Value	e an E	\mathbb{R})			
$= \langle \langle v \rangle$	4) ²	· · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · ·
		· · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · ·
where Av=	an V	and	v =	1	

Postulate II.c

postulate I.c

If the measurement of the physical quantity \mathcal{A} on the system in the state $|\psi\rangle$ gives the result a_n , then the state of the system immediately after the measurement is the normalized projection of $|\psi\rangle$ onto the eigensubspace associated with a_n

$$ert \psi
angle \stackrel{a_n}{\Longrightarrow} rac{P_n ert \psi
angle}{\sqrt{\langle \psi ert P_n ert \psi
angle}}$$

• this process, of "state collapse" when you

do a measurement, is the biggest philosophical

· Q. what kind of operator is a "Hamiltonian? $f \in \mathcal{H}$ $(M_{J}f)(x) = V(x)f(x)$ partial answer! $9 = L^2(\mathbb{R})$ $H = -\frac{d^2}{dx^2} + V(x)$ dx^{2} ' ' ' ' ' Special case of fx "harmonic $(Hf)(x) = -f''(x) + x^{2}f(x)$ oscillator" C.9. H∉ Z(92)! ... His unbounded!] [but

	operator	Schrödinge on H=L ² (R) e.e.		6 anillation
Schrödinger	equatin	e,e	g. Narmonic	05010100
ċ	* 24	= H Y =	$\frac{1}{2} = -\frac{1}{2} \frac{2^2 \sqrt{2}}{2}$	+ k 24
		$= \underbrace{(H^{\dagger})}_{C} $	- Vk	netric= 2m 8
50 Intian?:	· · · · · · · · ·	Ht/x)~	initial cor	dition P= m

"Functional Calculus"	bonded	Sunctional calculus
if A < 2000 then	we	want to
be able to form	and	understand
New operators	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
$f(A) \in \mathcal{L}(\mathcal{P})^{-1}$ where e.g. $(A) = \mathcal{L}(\mathcal{P})^{-1}$, n ⁽ⁿ⁾ h	achially re will do this for unbounded
$f(z) = e^{2} e^{t^{\alpha}}$ $to get$ $f(A) = e^{A}$	even Open	for Unbounded

Hilbert space formulation [edit]

Summary

The space $\mathbb H$ is a fixed complex Hilbert space of countably infinite dimension.

- The observables of a quantum system are defined to be the (possibly unbounded) self-adjoint operators A on $\mathbb H$.
- A state ψ of the quantum system is a unit vector of $\mathbb H$, up to scalar multiples; or equivalently, a ray of the Hilbert space $\mathbb H$.

from Dirac - von Neumann axions

• The expectation value of an observable A for a system in a state ψ is given by the inner product $\langle \psi, A\psi \rangle$.

	• •		•				• •										•		•				•			
	• •		• •			•				•				•			• •		•				• •			
														•												
																	• •									
																	• •									
																	• •									
																	• •									
																	• •									
																									-	

regardi	ng expec	tations:	$P = \frac{1}{6}, \frac{1}{6$,4,5,6} €(
	$A \in \mathcal{L}(C)$				
and f	$f \varphi_{k} = \lambda_{k} \varphi_{k}$	for	KEN	givés a	n ON
basis	of Grigren	of 2	, then	the ex	pectation
	in state 7			· · · · · · · · · ·	· · · · · · · · · · · ·
	$\langle A \rangle = \langle \gamma \rangle$;A-4>	= 2 2	$\lambda_{k} < \varphi_{k}$	(7)2
				ate (4k)	

because (for any fEX) $Af = \sum_{k=1}^{\infty} \langle \varphi_{k}, Af \rangle \varphi_{k} \qquad A = \sum_{k=1}^{\infty} \lambda_{k} \langle \varphi_{k}, \gamma \varphi_{k}$ $= \sum_{k=1}^{\infty} \langle A \varphi_{k}, f \rangle \varphi_{k} = \sum_{k=1}^{\infty} \eta_{k} | \mathcal{I}_{k} \rangle \langle \eta_{k} |$ $= \sum_{k=1}^{\infty} \lambda_k \langle \varphi_{k,f} \rangle \varphi_{k}$ So $\langle \mathcal{Y}, A\mathcal{Y} \rangle = \sum_{k=1}^{\infty} \lambda_k \langle \mathcal{Q}_k, \mathcal{Y} \rangle \langle \mathcal{Y}, \mathcal{Y}_k \rangle$

list of questions = this will finish my slides
Q1 An observable is a self-adjoint operator A
on H. Is it the that its "eigenvectors
forma basis" of 2?
A. Generally no. We will define the spatrum
of A as a larger subset of C, which includes any eigenvalues. We will prove the spectral theorem
(Chapter5) to update the meaning of "basis".

QZ. An observable A in QM is a self-
adjoint operator on 96. Does that mean AEXOO
A. No. Many observables in QM are
not bounded, though they are all linear.
For a single particle in 1D, where $\mathcal{H} = L^2(\mathbb{R})$,
the momentum is $p=-i t_{dx}$. This $\frac{3}{2}$
is an unbounded self-adjoint operator. In §
Chapter 3 ve define "un bounded opensor", fillouing

<u>Q3</u>	W	hat does	5 17	mean	for an	observable
to	have	discrete	″ or	Cont	hina ons "	spectrum?
		will a				
prec	ندو ٢	tatement	and	proof	of n	he
Spe	ctral	theorem	j∕∧ Internationalista	Chap	kr 5.	· · · · · · · · · · · · · · · ·
			· · · · · · ·	· · · · · · · · ·		
· · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · <th></th> <th></th>		

Q4 F	or continuou	ns spectrum,	postulate
I.6	said that t	Le probability of	- getting
dER	fim observat	im (observable) A	on state
		$\alpha) = \left \langle \alpha \mathcal{H} \rangle \right ^2 d$	
	does this m		
A. D	· (rigorous)	spectral theory	em will
• • • • • • • • • • •	explain this.		. .

Hamiltonian"?
A. It is the unbounded energy operator.
For each physical system one can build it
based on formulas for the classical energy.
For example, in the position representation H=L2(R)
we have $p = -ik \frac{d}{dx}$ for momentum, and V(x) is the potential energy, as a multiplicitie

A. cont operati	or on 94.	Then the	(tami /fonciar	۱ د د
		$-V(x) = \frac{1}{zm}$		
. .	$= \frac{h}{2m} \frac{d}{dx^2}$ kinetic e	+ V(x) pot	cntial energ	7
as an	un bomded	self-adjoint of	perator o	n 9€.
· · · · · · · · · · · · ·			· · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·

Q6. How do we solve the Schrödinger
equation, a PDE problem? How does the quantum state 46% evolve in time?
A. H Hamiltonian, a self-adjoint unbonded genator on H
• it $\frac{24}{2t} = HT$ schrödinger equation
• $U(t) = e^{-iHt/k}$ $unitary, U(t) \in \chi(3c)$

is created via exponentiating the Hami Honian $\Upsilon(t) = U(t)\Upsilon_{o}$ A grandfund start at time t=0 Since U(t) unition: < 4(t), 4(t) > = < u(t), u(t), u(t), 4, >= (U(+)*U(+) +0, 40) = (I+0, 40) = (40, 40) so total porobability remains 1