

post

Postulate II.a

Every measurable physical quantity ${\cal A}$ is described by a Hermitian operator A acting in the state space \mathcal{H} . This operator is an observable, meaning that its eigenvectors form a basis for ${\cal H}.$ The result of measuring a physical quantity ${\cal A}$ must be one of the eigenvalues of the corresponding observable A .

· this will regume some unpacking

 $def: A \in \mathcal{L}(94)$ is Hermitian (also known as self-adjoint) if $\langle Ay, w \rangle = \langle y, Aw \rangle$ for all $y, w \in H$ or equivalently, $A^* = A$ def: grien BEX(It), B^{*}, the adjoint of B, 15 the operator B^* \in $2(91)$ so that $\langle B^{\star}v,w\rangle = \langle v,Bw\rangle$ forall $vw \in H$

Postulate II.a

Every measurable physical quantity ${\cal A}$ is described by a Hermitian operator A acting in the state space $\mathcal H$. This operator is an observable, meaning that its eigenvectors form a basis for $\mathcal H$. The result of measuring a physical quantity $\mathcal A$ must be one of the eigenvalues of the corresponding observable A .

Eagain

 $\mathbf{D}.\mathbf{a}$

· I. a says that when you observe a physical quantity in an experiment you get an eigenvalue of a hermitian (self-adjoint) A · this experiments give real results

 $\cdot \sqrt{Q: A \in \chi(\mathcal{H})?}$ do we want to require that $A \cdot N_0$.

postulate I.b

Postulate II.b

When the physical quantity $\mathcal A$ is measured on a system in a normalized state $|\psi\rangle$, the probability of obtaining an eigenvalue (denoted a_n for discrete spectra and α for continuous spectra) of the corresponding observable A is given by the amplitude squared of the appropriate wave function (projection onto corresponding eigenvector).

$$
\mathbb{P}(a_n) = |\langle a_n | \psi \rangle|^2
$$
 (Discrete, nondegenerate spectrum)

$$
\mathbb{P}(a_n) = \sum_{i}^{\frac{g_n}{2}} |\langle a_n^i | \psi \rangle|^2
$$
 (Discrete, degenerate spectrum)

$$
d\mathbb{P}(\alpha) = |\langle \alpha | \psi \rangle|^2 d\alpha
$$
 (Continuous, nondegenerate spectrum)

 $\gamma \in H, \gamma \neq 0, \gamma \in L^2(\mathbb{R})$ $\Rightarrow \quad \mathcal{V} = \frac{\gamma}{\|\mathcal{V}\|}.$ $\int_{0}^{\infty} |\overline{\psi}(x)|^{2}dx = ||\overline{\psi}||^{2} = 1$ $|e+ig| = |f(x)|^2$ then $0 \rho \ge 0$ $\begin{array}{lll} \textcircled{3} & \textup{if } \mathcal{A}_x = 0 \end{array}$

· Q. what does it mean for AE2(9t) to have = discrete spectrum" versus continuous $Q.$ what does it man for $A \in \mathbb{Z}(2\ell)$ to
have $\geq d$ iscrete spectrum" versus "continuous"
spectrum"?
 $Q.$ what does $dP(\alpha) = |\langle \alpha | \Psi \rangle|^2 d\alpha$ "
even mean? $\frac{1}{3}$ spectrum" ? · Q . What does $dP(\alpha) = |\alpha| \nu|^{2} d\alpha''$ $Q.$ what does it mean for f
have $d \sinh \theta$ spectrum" versus
spectrum"?
 $Q.$ what does
 $dP(\alpha) = |\alpha| 193|^2 d\alpha''$
even mean? even mean ?

Disse notation: It is a complex the Mont space \mathcal{F} or Dirac: US: $\lim_{k \to \infty} \epsilon$ of $Veqt$ M_{A}^{β} $A v = a_{n}^{\epsilon} v$ $A|a_n\rangle = a_n|a_n\rangle$ $(a_n) \in \mathcal{H}'$ $R^{u,v'}$ $R(u)=\langle v, u \rangle \in \mathcal{H}'$ $C_{\{||v||^2 = \langle v, v \rangle = 1}^2}$ $\frac{a_n|a_n}{b_n} = 1$ $P_{\mu} = \langle v, u \rangle$ v $P= |a_n\rangle \langle a_n|$

Postulate II.c

postulate I.c

If the measurement of the physical quantity $\mathcal A$ on the system in the state $|\psi\rangle$ gives the result a_n , then the state of the system immediately after the measurement is the normalized projection of $|\psi\rangle$ onto the eigensubspace associated with a_n

$$
|\psi\rangle \quad \stackrel{a_n}{\Longrightarrow} \quad \frac{P_n|\psi\rangle}{\sqrt{\langle \psi|P_n|\psi\rangle}}
$$

. this process, of "state collapse" when you

do a measurement, is the biggest philosophical

. Q what kind of operation is a "Hamiltonian? $\int \mathcal{E} \mathcal{E}$ $(M_{v}f)(x) = V(x) f(x)$ partial answer! $91 = L^{2}(R)$ $H = -\frac{d^2}{dx^2} + V(x)$ dx^{2} $V(x)$
Special case of
 $\int dx^{2}$ harmonic
 $\int dx^{2}$ harmonic
 $\int dx^{2}$ harmonic $e.9.$ $H \notin \mathsf{X}(9t)$! H is unbounded! **ut**

· Q how do we solve (or understand solutions ot) the Schrödinger equation? Schrödinger equation H= L2(R)
Schrödinger equation $i\hbar \frac{\partial \Psi}{\partial t} = (\frac{1}{2})\Psi = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + \frac{k}{2} \frac{\partial^2 \Psi}{\partial x^2}$

which ?:
 $\Psi(t, x) = e^{\frac{(ht \cdot \hat{x})}{2}} \Psi(sx)$ $Solu$ δ ? exponentiate the operator H

Functional calculus" = bonded sunctional calculus $\frac{2\pi}{\sqrt{2}}$
 $\frac{2\pi}{\sqrt{2}}$
 $\frac{2\pi}{\sqrt{2}}$ $i f A \in \angle 90$ then we want to be able to form and understand new operators operators
 $f(A) \in \mathcal{L}(9)$ = bonded &
Then we W
Drm and U
(N) we be able to form and understa
lew operators
 $f(A) \in \mathcal{L}(9-1)$ actually e. ٦
9 $e^{e^{i\theta}}$ we will do this $f(z)=e^z$ even for unbounded to get $f(A) = e^{A K}$ operators

Hilbert space formulation $[edit]$

The space $\mathbb H$ is a fixed complex Hilbert space of countably infinite dimension.

- The observables of a quantum system are defined to be the (possibly unbounded) self-adjoint operators A on $\mathbb H$.
- A state ψ of the quantum system is a unit vector of $\mathbb H$, up to scalar multiples; or equivalently, a ray of the Hilbert space $\mathbb H$.
- The expectation value of an observable A for a system in a state ψ is given by the inner product $\langle \psi, A\psi \rangle$.

Summary from Dirac-von Neumann axions

regarding expectations : $2345,67$
 $2-\frac{1}{6},\frac{1}{$ 2 $\frac{1}{6}$ $3,45,62$
 \leftarrow
 \leftarrow
 \leftarrow
 \leftarrow
 \leftarrow
 \leftarrow

 $i=1$ if $A \in \chi(\mathcal{H})$ is an observable and $A\varrho_k = \lambda_k \varrho_k$ for keN gives an ON in QM basis $\{96\}_{k\in\mathbb{N}}$ of 96 then the expectation of A in state 4696 is $\langle A \rangle = \langle A, A, A \rangle =$ $tan \lambda$ the exp 4) - $=\sum_{k=1}^{\infty} \lambda_k P(\gamma)$ is in state φ_k)

because (for any $f \in \mathcal{H}$) $Af = \sum_{k=1}^{\infty} \langle \varphi_{k}, Af \rangle \varphi_{k} \Bigg| A = \sum_{k=1}^{\infty} \lambda_{k} \langle \varphi_{k}, \cdot \rangle \varphi_{k}$ 244.69
 22224 $=\sum_{k=1}^{\infty}a_{k} \langle \varphi_{k,1}\rangle \varphi_{k}$ S_{0} (4, A 4) = $\sum_{k=1}^{\infty} \lambda_{k} \langle \varphi_{k}, \psi \rangle \langle \psi_{k} \rangle$

