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Handout: Definitions and facts
(which you will need to get started)

Functional analysis is the study of vector spaces which have a topology. Therefore you
need to have some sense of what a “topology” is. In fact, our textbook (D. Borthwick,
Spectral Theory: Basic Concepts and Applications, GTM 284, Springer, 2020) assumes that
you know the basics of topology, vector spaces, measures, and integrals. This handout
is an attempt to get you up to speed on these topics, so that you can develop real
understanding from the book. Note that good mathematicians regularly stop their
reading and ask themselves “Do I genuinely understand the definition of this term?
What little exercises would confirm that understanding?”

Metric spaces.

We start with a “metric”, and then define open and closed sets from that, which is a
topology. A metric is a generalized distance function.

Definition. Suppose X is any set. (Elements of X will be called “points”.) A function
d : X ×X → R is a metric if, for all x, y, z ∈ X , these conditions hold:

1. d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y

2. d(x, y) = d(y, x) (symmetry)

3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

The addition symbol in condition 3 acts on real numbers, and not on the elements of the
general set X . (Addition may not even be meaningful for elements of X!) Also observe
that one cannot substitute C for R in this definition because a reasonable ordering
“≤” is not available for C. If you have seen “norms” on vector spaces then the above
definition will seem familiar; we will get there shortly.

Definition. If X is a set and d is a metric then one calls the pair (X, d) a metric space.

Here are two examples of metric spaces:

Example A. Let X = Sn be the unit sphere, namely the set of points in Rn which are
Euclidean distance 1 from the origin. Let d be the Euclidean distance
between points of Sn.

Show it! (Argue that d defines a metric.)
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Example B. Let X be any set whatsoever. Define d(x, x) = 0 and d(x, y) = 1 if x ̸= y.

Show it! (Argue that d defines a metric. Note X could be a very general set.)

One should conclude the following general fact from thinking about Example A: every
subset of a metric space is also a metric space, with the same metric.

Vector spaces.

Many metric spaces are actually vector spaces with norms. We start by defining an
abstract vector space, but treated as an exercise. Do you remember all the conditions?

Instructions: Fill in the axioms for a vector space, to complete the definition below. Add bullet
points as needed.

Definition. A set V (of vectors) with a scalar multiplication operation ∗ : C × V → V
and a vector addition operation + : V × V → V is a (complex) vector space if the
following hypotheses and conditions hold:

•

•

•

•
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•

•

•

Norms.

Section 2.1 of the textbook defines a “norm”.

Instructions: Fill in the definition below. Refer to Section 2.1 as needed.

Definition. A norm on a complex vector space V is a function ∥ · ∥ : V → R satisfying,
for all v, w ∈ V and a ∈ C,

1.

2.

3.

Definition. If V is a vector space and ∥·∥ is a norm on it then we say (V , ∥·∥) is a normed
vector space.

Every normed vector space is also a metric space, and the next Exercise asks you to
show this. A norm is thus a special case of a metric; a norm requires the additional struc-
ture of a vector space. You need to be able to add elements themselves, and multiply
them by scalars; the elements of the set need to be vectors and not just “points”.

Exercise. Show that if ∥ · ∥ is a norm on V then the distance function defined in Section 2.1,
namely dist(v, w) := ∥v − w∥, is a metric. Thus (V , dist) is a metric space.
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Open and closed sets (are topology).

Once you have a metric on a set, or a norm on a vector space, then you can define
“open” and “closed” subsets, and talk about the “boundaries” of sets. Open sets allow
one to talk about “nearness” generally. Our starting point is a “ball” around a point.

Definition. Suppose (X, d) is a metric space. If x ∈ X is a point and ϵ > 0 is a real
number then the open ball of radius ϵ > 0 around x is the set

Bϵ(x) = {y ∈ X : d(x, y) < ϵ}

Definition. Suppose (X, d) is a metric space.

• A subset Y ⊂ X is open if for all y ∈ Y there is ϵ > 0 so that Bϵ(y) ⊂ Y .

• A subset Y ⊂ X is closed if X \ Y is open.

If (V , ∥·∥) is a normed vector space then the above definitions all make sense, of course,
with the formula Bϵ(x) = {y ∈ X : ∥x− y∥ < ϵ}.

Exercise. Sketch an open set in the plane R2, and illustrate the definition of open set.

Exercise. Generally speaking, sets are neither open nor closed. Sketch an example of such a set
in the plane R2.
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Definition. Suppose (X, d) is a metric space and Y ⊂ X is any subset. A point z ∈ X is
in the boundary of Y if for all ϵ > 0, both Bϵ(z)∩Y and Bϵ(z)∩ (X \Y ) are non-empty.
We write ∂Y for the set of points which are in the boundary of Y .

Exercise. Using a different color, sketch ∂Y onto your above example.

Finally, here is a promised definition.

Definition. Suppose X is a set, and if {Yα} is a collection of subsets of X which are the
open sets. Then we say {Yα} is a topology on X .

If (X, d) is a metric space then the above definition suffices because we already know
which are the open sets. However, topology is more general than metric spaces. On
any set a collection of subsets can be defined as the open sets if it satisfies certain
requirements. The collection must include the empty set ∅ and the whole set X , the
intersection of any pair of subsets in the collection must be in the collection, and any
union of subsets in the collection must be back in the collection. These conditions all
hold if you define open sets via a metric; feel free to treat this as another Exercise!

From the definition of a “topology” we can make sense of a phrase like “functional
analysis is the study of vector spaces which have a topology.” Having a system of
identified open sets makes it possible to talk about limits, continuity, and so on, and
ultimately to find solutions to hard problems.

Limits and continuity.

From the definition of open sets, or more directly by using a metric, we can define the
limit of a sequence.

Definition. Suppose (X, d) is a metric space and (xn) is a sequence of points from X . We
say that the limit of (xn) is x̂, written

lim
n→∞

xn = x̂, or xn → x̂,

if x̂ ∈ X and if either of the following conditions holds:

1. for each open set Y which contains x̂ there is N so that n ≥ N implies xn ∈ Y , or

2. for each ϵ > 0 there is N so that n ≥ N implies xn ∈ Bϵ(x̂).

Exercise. Show that the two definitions are equivalent.
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Exercise. Write a third equivalent form of the definition using only the metric d. (Do not
mention open sets or Bϵ(·).)

Definition. Suppose (X, d) is a metric space and that x̂ = lim
n→∞

xn for a sequence (xn).
We say that the sequence converges.

Exercise. Show that a sequence cannot converge to two different limits.

Now consider complex-valued and real-valued functions.

Definition. Suppose (X, d) is a metric space and f : X → C is a function. We say that f
is continuous at x̂ ∈ X if either of the following conditions holds:

1. for each ϵ > 0 there is δ > 0 so that x ∈ Bϵ(x̂) implies |f(x)− f(x̂)| < ϵ, or

2. for all sequences (xn) such that lim
n→∞

xn = x̂, it holds that lim
n→∞

f(xn) = f(x̂).

The second definition is often called “sequential continuity”.

Definition. We say that f is continuous if it is continuous at every x̂ ∈ X .

Exercise. Let f(x) = x2 for x ∈ R. Show that f is continuous.
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Exercise. (This follows Example B on page 1. It is an extreme, entertaining, and not
terribly important case.) Let X be any set and define the metric by d(x, x) = 0 and d(x, y) =
1 if x ̸= y. Show that if a sequence converges then it is eventually constant. Then, for any
function f : X → C, show that f is continuous.

Cauchy sequences and completeness.

When we have a topology on X and a sequence (xn) of points in X then the above def-
inition determines whether the sequence converges. However, the definition requires
that we have identified the limit x̂ ∈ X . That is, convergence of a sequence means
convergence to a particular limit.

In certain metric space topologies convergence becomes easier! That is, sometimes
there is an easier-to-check condition that is equivalent to convergence to some limit.
The condition only involves the distance between elements of the sequence.

Definition. Suppose (X, d) is a metric space and (xn) is a sequence of points in X . We
say that (xn) is a Cauchy sequence if for any ϵ > 0 there is N so that if m ≥ N and
n ≥ N then d(xm, xn) < ϵ.

Exercise. Show that if a sequence (xn) converges to limit x̂ then (xn) is Cauchy.
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Exercise. Rewrite the Cauchy sequence definition for a normed vector space. Compare the
resulting definition to the one stated in section 2.1 of our textbook. Show that the two definitions
are the same.

Definition. Suppose (X, d) is a metric space. If every Cauchy sequence (xn) in X has a
limit, i.e. there is x̂ ∈ X so that lim

n→∞
xn = x̂, then we say that (X, d) is complete.

Not all metric spaces are complete. For example, the rational numbers are a normed
vector space, using the usual absolute value as the metric, but there are Cauchy se-
quences of rational numbers which do not converge.

We will accept the following Theorem without proof.

Theorem. The real numbers R, with the usual absolute value norm, is a complete normed
vector space, and thus a complete metric space. Likewise the complex numbers C is a
complete normed vector space.

Exercise. Let x0 = 2. For k = 1, 2, . . . define xk as the real zero of the tangent line to y = x2−2
at xk−1. Argue that xk is rational. Argue geometrically, from the graph of y = x2−2, that (xk)
is Cauchy. What is the limit of (xk)?

With the above definition of completeness, we are now at the start of functional analy-
sis! The following is a major conceptual starting point.

Definition. Suppose (V , ∥ · ∥) is a normed vector space, and that it is complete metric
space. We call (V , ∥ · ∥) a Banach space.

8
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Compact sets.

Speaking very informally, a compact subset of a metric space is well-approximated by
finitely-many points. The precise definition seems awkward when you first read it.

Definition. Suppose (X, d) is a metric space and Z ⊂ X . We say that {Yα} is an open
cover of Z if each Yα is open set in X and if

Z ⊂
⋃
α

Yα.

Definition. We say K is compact if from every open cover {Yα} of K we can choose a
finite sub-collection {Yαj

}nj=1 which is also an open cover of K.

This definition is often said as “a set is compact if every open cover of K has a finite
sub-cover”.

Exercise. For X = R2, sketch a subset K and sketch the above definitions.

Exercise. Suppose K ⊂ X is a finite set. Show that K is compact.

Exercise. Pretend to do numerical stuff as follows: Sketch a grid of balls Bϵ(xj,k), an open cover,
over the set K = [0, 1]2. This illustrates the informal description of “compact.”

9
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Exercise. Suppose K = [0, 1] ⊂ R. Sketch the (direct) proof that K is compact. You will need
the fact that (R, | · |) is a complete metric space.

Closed and bounded sets in normed vector spaces are commonly objects of interest in
functional analysis. In finite dimensions these are compact sets. We will see that they
are not generally compact in infinite-dimensional normed vector spaces, whether or
not those spaces are complete (i.e. Banach spaces).

We will accept the following important theorem without proof.

Theorem. (Heine-Borel) If K ⊂ Cn is closed and bounded then K is compact.

An optimization problem for a real-valued function can always be solved if the func-
tion is continuous and the input set is compact. This is the start of the entire field of
optimization!

Theorem. (“Extreme value theorem”) Suppose (X, d) is a metric space, K ⊂ X , and
f : K → R (or f : X → R) is continuous. If K ⊂ X is compact then f attains its
maximum and minimum on K.

Precisely-stated, the conclusion of this theorem is that there are p, q ∈ K so that

f(p) ≤ f(x) ≤ f(q)

for all x ∈ K.

Linear maps.

Instructions: The core meaning of “linear” is another fill-in-the-blanks exercise.

Definition. Suppose V ,W are vector spaces. A function (map) L : V → W is linear if
the following two conditions hold:

1.

2.
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Exercise. Show that if L : V → W is linear then L0 = 0. Also show that the sets

kerL = {v ∈ V : Lv = 0}, rangeL = {w ∈ W : ∃v ∈ V so that Lv = w}

are vector spaces.

In functional analysis we will have much to say about linear maps, that is, linear maps
on vector spaces which also have a topology. The above is what you need to get started.

Linear combinations.

Sometimes a vector can be built from other vectors in a manner that linear maps will
respect, that is, as a linear combination. However, it is extremely important to distin-
guish between finite sums and infinite sums. Finite sums are never problematic for
linear maps, but infinite sums have issues of convergence, that is, of topology.

Definition. Suppose V is a complex vector space and u ∈ V is a vector. Suppose S =
{vα} is any collection of vectors. We say u is a (finite) linear combination from S if
there exist finitely-many vectors {vαj

}nj=1 from S, and coefficients cj ∈ C, so that

u = c1vα1 + · · ·+ cnvαn =
n∑

j=1

cjvαj

In the above definition S may be a finite or an infinite set. However, for the purposes
of functional analysis we will reserve the words “linear combination” for finite linear
combinations. We will also use infinite sums of vectors, quite routinely, but these will
be called series, the same name for infinite sums as in calculus, and we will pay close
attention to whether these series converge.

11



Math 617 Functional Analysis January 2024 (Bueler)

Exercise. Show that if L : V → W is a linear map then L

(
n∑

j=1

cjvαj

)
=

n∑
j=1

cjLvαj
.

For future reference, note that any linear map, whether or not it is continuous, can be
applied to finite sums as above.

Definition. Suppose V is a complex vector space. Suppose S = {vα} is any set of vectors
from V , whether finite or infinite. The span of S is the set of all finite linear combina-
tions:

spanS =

{
n∑

j=1

cjLvαj
: cj ∈ C and vαj

∈ S

}
.

Definition. Suppose V is a complex vector space. If there exists a finite subset S ⊂ V
so that V = spanS then we say V is finite dimensional. If not, we say V is infinite
dimensional. In the former case dimV = min |S| is the dimension of cV , where the
minimum is over S ⊂ V such that spanS = V . (Here |S| denotes the cardinality of S.)

Definition. Suppose V is a complex vector space and S = {v1, . . . , vn} ⊂ V is a finite
subset. We say S is linearly independent if there exist no coefficients cj ∈ C, other

than identically zero coefficients, so that 0 =
n∑

j=1

cjvj .

Exercise. Show that the set


10
0

 ,

02
0

 ,

00
3

 ,

11
1

 in C3 is linearly dependent.

Definition. Suppose V is a complex vector space and that S ⊂ V . If every finite subset
of S is linearly independent and if spanS = V then we call S a (algebraic or Hamel)
basis for V .

In the above definition, if S itself is finite then V is finite-dimensional and this is the
usual definition of “basis”: a basis is a finite and linearly-independent set of vectors
which spans the vector space.

However, if S is infinite, so that V is an infinite dimensional vector space, then the
above definition of Hamel basis is widely regarded as useless! This strange situa-
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tion is despite the fact that the axiom of choice shows that every vector space V has
an algebraic/Hamel basis. For all of the many parts of mathematics of which I am
aware which use infinite-dimensional vector spaces, there are zero applications of alge-
braic/Hamel bases. In any case the concept never comes up in our textbook.

Measure.

Our final topic is integration, which is to say Lebesgue integration. We will suppress
many details and be very brief. However, Appendix A of our textbook fills in much of
the theory, at a more general level than here. For even more information, please see a
graduate text on real analysis.

These notes restrict to Lebesgue integration of complex-valued functions over Eu-
clidean space Rn, or a subset thereof. The main starting ideas are “measurable sets”
and (positive) “measure”. The following is not really a definition because it suppresses
the precise properties satisfied by measurable subsets of Rn. We will accept, without
proof, the existence of such a well-defined and useful system of measurable sets.

Definition. The (Lebesgue) measurable subsets are a collection M of subsets of Rn.
The collection M includes all open and closed sets, and furthermore it is closed under
countable unions, countable intersections, and complements.1

Intuitively, if one can describe precisely how a subset of Rn is constructed then it will
be measurable. Even “weird” sets like fractals and randomly-generated subsets are
measurable. Nonetheless, there are (many) non-measurable subsets, but their “con-
structions” require highly-abstracted steps, e.g. using the axiom of choice.

Definition. A (positive) measure is a function

µ : M → [0,∞)

with the property of countable additivity, namely that if Aj ∈ M for j = 1, 2, . . . is a
sequence of disjoint measureable sets then

µ

(
∞⋃
j=1

Aj

)
=

∞∑
j=1

µ(Aj).

Intuitively, a measure reports how big a given set is. Thus a measure is a generalization
of area or volume. But the concept is very general! It also generalizes the idea of
counting the number of points in a set. In fact, some measures yield large numbers for
certain finite sets, whereas other measures give zero for all finite sets; the latter is true
of Lebesgue measure. Again the following definition suppresses many details.

1The technical issue in the construction of M is that first you build the Borel measurable sets as
the smallest σ-algebra including the open and closed sets, and then later you build M by including all
subsets of sets of measure zero. As I said, I am suppressing such details here.
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Definition. On Rn, Lebesgue measure is a measure

m : M → [0,∞)

for which the rectangles (products of intervals) have their usual volume:

if R = I1 × I2 × · · · × In then m(R) =
n∏

j=1

(bj − aj).

Here each Ij is an interval which may or may not include its endpoints:

Ij = (aj, bj)
∣∣∣ (aj, bj] ∣∣∣ [aj, bj) ∣∣∣ [aj, bj].

(Note that all rectangles Rj are themselves Lebesgue measurable.)

We will accept without proof that Lebesgue measure actually exists.

A key idea is that the Lebesgue measure m(A) is defined for any set A ∈ M, and thus
for many subsets of Rn which are much more general than products of intervals. In any
case the number m(A) is the n-dimensional volume of A. Some sources denote m(A) by
vol(A). Lebesgue measure is well-defined for extraordinarily complicated sets, e.g. the
famous Mandelbrot set in R2, but also for any ordinary polygon.

Exercise. In any dimension the Lebesgue measure of a single point is zero: m({x}) = 0. It
follows from the above definition . . . why? Show that the set of rational numbers Q ⊂ R1 is
measurable and that it is also of measure zero.

An essential formula, and a key one for understanding Lebesgue measure, is that if
A ∈ M then

m(A) = inf

{
∞∑
j=1

m(Rj) : A ⊂
∞⋃
j=1

Rj

}
where Rj are products of intervals as above. That is, for measurable sets A we can
compute (or imagine computing) m(A) by covering A with rectangles more and more
accurately, and then taking the smallest resulting volume.

14
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Exercise. Argue for why the rule m(T ) = 1
2
bh applies to triangles T ⊂ R2. For simplicity con-

sider right triangles with vertices at (0, 0), (b, 0), and (0, h). Cover T with disjoint rectangles
and use the above idea.

We will accept the following very important fact without proof.

Lemma. Lebesgue measure is translation invariant: if A ∈ M and y ∈ Rn then A + y ∈
M and

m(A+ y) = m(A).

Integral.

Some functions are well-behaved with respect to the measurable sets. For the following
definition, recall that f−1(A) = {x ∈ X : f(x) ∈ A} is the preimage of A.

Definition. Consider a function f : X → C where the domain is a measurable subset of
Rn: X ∈ M. (Note X = Rn itself is a common case.) The function is measurable if the
preimage of every open set is a measurable set:

A ⊂ C is open =⇒ f−1(A) ∈ M.

The same definition applies to real-valued functions.

The definition of the integral of a measurable function starts via a simpler class of
functions than measurable functions, namely “simple” functions.

Definition. The characteristic function of a set E ⊂ Rn is χE(x) =

{
1, x ∈ E

0, x /∈ E
.

Definition. A function φ : X → C is simple if there exist finitely-many measurable sets
Ej ∈ M, such that m(Ej) < ∞, and coefficients cj ∈ C so that

φ(x) =
ℓ∑

j=1

cjχEj
(x)

15



Math 617 Functional Analysis January 2024 (Bueler)

If φ is simple then |φ| is also simple. Note that a simple function attains only finitely-
many values.

Exercise. Argue that one can always choose the sets Ej to be nonempty and disjoint. (In which
case the coefficients cj are equal to the attained nonzero values.)

A key idea about simple functions is that one can approximate more general functions
by simple functions based on finely cutting up the y-axis.

Exercise. Sketch a continuous function f : [0, 1] → R. Now use a different color to sketch a
simple function φ which approximates it closely (φ ≈ f ).

We will accept without proof the following approximation fact.

Lemma. If f : X → C is measurable then there exists a sequence of simple functions
(φk) such that φk → f pointwise, and such that |φk| increases to |f |.

The core idea of Lebesgue integration, versus Riemann integration, is in the following
easy definition.

Definition. The (Lebesgue) integral of the simple function φ =
∑ℓ

j=1 cjχEj
is the weighted

sum of the Lebesgue measures of its constituent sets:

∫
X

φdm =
ℓ∑

j=1

cjm(Ej) .
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Exercise. Make side-by-side sketches of the Lebesgue integral of a simple function and of some
Riemann sums for the same function and integral.

We can integrate measurable functions via approximation by simple functions. How-
ever, the following definition also reflects the fact that we need to be cautious and avoid
ambiguous “infinity minus infinity” situations.

Definition. Suppose f : X → C is a measurable function. If (φk) is a sequence of simple
functions as in the previous lemma, and if

lim
k→∞

∫
X

|φk| dm < ∞

then we say f is integrable.

For a measurable function f , one is free to define the integral of |f | as the above
limit whenever the sequence (φk) comes from the previous lemma, i.e.

∫
X
|f | dm =

limk→∞
∫
X
|φk| dm, and our textbook does this. However, the value might be +∞. The

adjective “integrable” means that this limit is finite.

Definition. Suppose f : X → C is an integrable function. (Note f is, of course, also
measurable.) Then its Lebesgue integral is∫

X

f dm = lim
k→∞

∫
X

φk dm

We will accept without proof that the integral value is in C, and that it is unique. (That
is, the integral does not depend on which approximating sequence (φk) was used.)

Sometimes the integral is written with an independent variable, and sometimes not.
The notation “dx” is (very) common for Lebesgue measure. In fact, if X = (a, b) is an
interval then one can further calculus-ify the notation:∫ 1

0

f(x) dx =

∫
X

f(x) dx =

∫
X

f dm.

These are all the same integral.

Another name for integrable functions is “L1”.
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Definition. For X ⊂ Rn measurable, X ∈ M,

L1(X) = {f : X → C is integrable}

If X = (a, b) is an interval then one writes L1(a, b) or L1[a, b].

Exercise. Explain why the choice of writing L1(a, b) or L1[a, b] does not matter.

To actually compute numbers from integrals, the technique invented by Newton and
Leibniz remains the most popular! Here is one form of their idea, in terms of Lebesgue
integrability. Theorem A.7 in the textbook is a better form, because it describes a prop-
erty satisfied by the antiderivative, namely “absolute continuity.”

Theorem. (Fundamental Theorem of Calculus) If f ∈ L1(a, b) then there is a continu-
ous function F (x) with F ′(x) = f(x), and

F (b)− F (a) =

∫ b

a

f(x) dx.

Though it seems somewhat circular, a formula for one such antiderivative F (x) is

F (x) =

∫ x

a

f(x) dx.

Exercise. (Use several colors for this exercise.) Sketch f(x) = 1 − x2 on [0, 1]. Sketch simple
functions φk(x) which approximate it from below, and their integrals. Sketch

∫ 1

0
f(x) dx as an

area. Compute it by the FTC.
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