
6
Perspectives on the Spectral Theorem

6.1 The Difficulties with the Infinite-Dimensional
Case

Suppose A is a self-adjoint n × n matrix, meaning that Akj = Ajk for all
1 ≤ j, k ≤ n. Then a standard result in linear algebra asserts that there
exist an orthonormal basis {vj}nj=1 for C

n and real numbers λ1, . . . , λn
such that Avj = λjvj . (See Theorem 18 in Chap. 8 of [24] and Exercise 4
in Chap. 7.)
We may state the same result in basis-independent language as follows.

Suppose H is a finite-dimensional Hilbert space and A is a self-adjoint
linear operator on H, meaning that 〈φ,Aψ〉 = 〈Aφ,ψ〉 for all φ, ψ ∈ H.
Then there exists an orthonormal basis ofH consisting of eigenvectors for A
with real eigenvalues.
Since there is a standard notion of orthonormal bases for general Hilbert

spaces, we might hope that a similar result would hold for self-adjoint
operators on infinite-dimensional Hilbert spaces. Simple examples, however,
show that a self-adjoint operator may not have any eigenvectors. Consider,
for example, H = L2([0, 1]) and an operator A on H defined by

(Aψ)(x) = xψ(x). (6.1)

Then A satisfies 〈φ,Aψ〉 = 〈Aφ,ψ〉 for all φ, ψ ∈ L2([0, 1]), and yet A
has no eigenvectors. After all, if xψ(x) = λψ(x), then ψ would have to be
supported on the set where x = λ, which is a set of measure zero. Thus,
only the zero element of L2([0, 1]) satisfies Aψ = λψ.
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Now, a physicist would say that the operator A in (6.1) does have
eigenvectors, namely the distributions δ(x − λ). (See Appendix A.3.3.)
These distributions indeed satisfy xδ(x − λ) = λδ(x − λ), but they do
not belong to the Hilbert space L2([0, 1]). Such “eigenvectors,” which be-
long to some larger space than H, are known as generalized eigenvectors.
Even though these generalized eigenvectors are not actually in the Hilbert
space, we may hope that there is some sense in which they form something
like a orthonormal basis. See Sect. 6.6 for an example of how such a “basis”
might function.
Let us mention in passing that our simple expectation of a true orthonor-

mal basis of eigenvectors is realized for compact self-adjoint operators,
where an operator A on H is said to be compact if the image under A of
every bounded set in H has compact closure; see Theorem VI.16 in Vol-
ume I of [34]. The operators of interest in quantum mechanics, however,
are not compact. (Of course, even if a self-adjoint operator is not compact,
it might still have an orthonormal basis of eigenvectors, as, e.g., in the case
of the Hamiltonian operator for a harmonic oscillator. See Chap. 11.)
Meanwhile, there is another serious difficulty that arises with self-adjoint

operators in the infinite-dimensional case. Most of the self-adjoint operators
A of quantum mechanics are unbounded operators, meaning that there is
no constant C such that ‖Aψ‖ ≤ C ‖ψ‖ for all ψ. Suppose, for example,
that A is the position operator X on L2(R), given by (Xψ)(x) = xψ(x). If
1E denotes the indicator function of E (the function that is 1 on E and 0
elsewhere), then it is apparent that

∥∥X1[n,n+1]

∥∥ ≥ n
∥∥1[n,n+1]

∥∥
for every positive integer n, and, thus, X cannot be bounded. Now, using
the closed graph theorem and elementary results from Sect. 9.3, it can be
shown that if A is defined on all of H and satisfies 〈φ,Aψ〉 = 〈Aφ,ψ〉 for
all φ, ψ ∈ H, then A must be bounded. (See Corollary 9.9.) Thus, if A is
unbounded and self-adjoint, it cannot be defined on all of H.
We define, then, an “unbounded operator on H ” to be a linear operator

from a dense subspace of H—known as the domain of A—to H. The no-
tion of self-adjointness for such operators is more complicated than in the
bounded case. The obvious condition, that 〈φ,Aψ〉 should equal 〈Aφ,ψ〉 for
all φ and ψ in the domain of A, is not the “right” condition. Specifically,
that condition is not sufficient to guarantee that the spectral theorem ap-
plies to A. Rather, for any unbounded operator A, we will define the adjoint
A∗ of A, which will be an unbounded operator with its own domain. An
unbounded operator is then defined to be self-adjoint if the domains of A
and A∗ are the same and A and A∗ agree on their common domain. That
is to say, self-adjointness means not only that A and A∗ agree whenever
they are both defined, but also that the domains of A and A∗ agree.
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6.2 The Goals of Spectral Theory

Before getting into the details of the spectral theory, let us think for a
moment about what it is we want the spectral theorem to do for us. In the
first place, we would like the spectral theorem to allow us to apply various
functions to an operator. We saw, for example, that the time-dependent
Schrödinger equation can be “solved” by setting ψ(t) = exp{−itĤ/�}ψ0.
Because the Hamiltonian operator Ĥ is unbounded, it is not convenient
to use power series to define the exponential. If, however, Ĥ has a true
orthonormal basis {ek} of eigenvectors with corresponding eigenvalues λn,
then we can define exp{−itĤ/�} to be the unique bounded operator with
the property that

e−itĤ/�ek = e−itλk/�ek

for all k.
In cases where Ĥ does not have a true orthonormal basis of eigenvectors,

we would like the spectral theorem to provide a “functional calculus” for
Ĥ , that is, a system for applying functions (including exponentials) to Ĥ .
This functional calculus should have properties similar to what we have in
the case of a true orthonormal basis of eigenvectors.
In the second place, we would like the spectral theorem to provide a

probability distribution for the result of measuring a self-adjoint opera-
tor A. Let us recall how measurement probabilities work in the case that
A has a true orthonormal basis {ej} of eigenvectors with eigenvalues λj .
Building on Example 3.12, we may compute the probabilities in such a case
as follows. Given any Borel set E of R, let VE be the closed span of all the
eigenvectors for A with eigenvalues in E, and let PE be the orthogonal
projection onto VE . Then for any unit vector ψ, we have

probψ(A ∈ E) = 〈ψ, PEψ〉 . (6.2)

In particular, if the eigenvalues are distinct and ψ decomposes as ψ =∑
j cjej , the probability of observing the value λj will be |cj |2 (as in Ex-

ample 3.12), since P{λj} is just the projection onto ej .
In cases where A does not have a true orthonormal basis of eigenvectors,

we would like the spectral theorem to provide a family of projection oper-
ators PE , one for each Borel subset E ⊂ R, which will allow us to define
probabilities as in (6.2). We will call these projection operators spectral
projections and the associated subspaces VE spectral subspaces. (Thus, PE
is the orthogonal projection onto VE .) Intuitively, VE may be thought of as
the closed span of all the generalized eigenvectors with eigenvalues in E.
In the first version of the spectral theorem, both these goals will be

achieved, with the spectral projections being provided by a projection-
valued measure and the functional calculus being provided by integration
with respect to this measure. Although having (generalized) eigenvectors
for a self-adjoint operator is, from a practical standpoint, of secondary



126 6. Perspectives on the Spectral Theorem

importance, we provide a framework for understanding such eigenvectors,
using the concept of a direct integral. The second version of the spectral
theorem decomposes the Hilbert space H as a direct integral, with respect
to a certain measure μ, of generalized eigenspaces for a self-adjoint oper-
ator A. The generalized eigenspace for a particular eigenvalue λ will not
actually be a subspace ofH, unless μ({λ}) > 0. Thus, the notion of a direct
integral gives a rigorous meaning to the notion of “eigenvectors” that are
not actually in the Hilbert space.

6.3 A Guide to Reading

Although the portion of this book devoted to spectral theory is unavoidably
technical in places, it has been designed so that the reader can take in as
much or as little as desired. The reader who is willing to take things on faith
can simply take in the examples of the position and momentum operators
in Sects. 6.4 and 6.6 and accept these as prototypes of how the spectral
theorem works. The reader who wants more details can find the statement
of the spectral theorem for bounded operators, in two different forms, in
Chap. 7, and can find the basics of unbounded self-adjoint operators in
Chap. 9. Finally, the reader who wants a complete treatment of the subject
can find full proofs of the spectral theorem in both forms, first for bounded
operators in Chap. 8, and then for unbounded operators in Chap. 10.

6.4 The Position Operator

As our first example, let us consider the position operator X , given by
(Xψ)(x) = xψ(x), acting on the Hilbert space H = L2(R). As for the
similar operator in Sect. 6.1, X has no true eigenvectors, that is, no eigen-
vectors that are actually in H. If we think that the generalized eigenvectors
for X are the distributions δ(x−λ), λ ∈ R, then we may make an educated
guess that the spectral subspace VE should consist of those functions that
“supported” on E, that is, those that are zero almost everywhere on the
complement of E. (A superposition of the “functions” δ(x−λ), with λ ∈ E,
should be a function supported on E.)
The spectral projection PE is then the orthogonal projection onto VE ,

which may be computed as

PEψ = 1Eψ,

where 1E is the indicator function of E. In that case, we have, follow-
ing (6.2),

probψ (X ∈ E) = 〈ψ, PEψ〉 =
∫
E

|ψ(x)|2 dx.
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This formula is just what we would have expected from our discussion in
Chap. 3, where we claimed that the probability distribution for the position
of the particle is |ψ(x)|2.
Meanwhile, let us consider the functional calculus for X . If f(λ) = λm,

then f(X) should be just the mth power of X , which is multiplication by
xm. It seems reasonable, then, to think that for any function f , we should
define f(X) to be simply multiplication by f(x). In particular, the operator
eiaX should be simply multiplication by eiax, which is a bounded operator
on L2(R).

6.5 Multiplication Operators

Since the position operator acts simply as multiplication by the function
x, it is straightforward to find the spectral subspaces and also to construct
the functional calculus for X . We may consider multiplication operators in
a more general setting. If H = L2(X,μ) and h is a real-valued measurable
function on X , then we may define the multiplication operator Mh on
L2(X,μ) by

Mhψ = hψ.

We can then construct spectral subspaces as

VE = {ψ ∣∣ψ is supported on h−1(E)}
and define a functional calculus by

f(A) = multiplication by f ◦ h.
One form of spectral theorem may now be stated simply as follows: A

self-adjoint operator A on a separable Hilbert space is unitarily equivalent
to a multiplication operator. That is to say, there is some σ-finite mea-
sure space (X,μ) and some measurable function h on X such that A is
unitarily equivalent to multiplication by h. (See Theorem 7.20.) Although
this version of the spectral theorem is compellingly easy to state, there is
slight modification of it, involving direct integrals, that is in some ways
even better. See Sect. 7.3 for more information.

6.6 The Momentum Operator

Let us now see how the spectral theorem works out in the case of the
momentum operator, P = −i� d/dx on L2(R). The “eigenvectors” for
P are the functions eikx, k ∈ R, with the corresponding eigenvalues be-
ing �k. Although the functions eikx are not in L2(R), the Fourier trans-
form shows that any function in L2(R) can be expanded as a superposition
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(i.e., continuous version of a linear combination) of these functions. (See
Appendix A.3.2.) Indeed, the Fourier transform is very much like the de-
composition of a vector in an orthonormal basis, in that the Fourier coeffi-
cients ψ̂(k) can be expressed in terms of the “inner product” of a function
ψ with eikx:

ψ̂(k) = (2π)−1/2

∫ ∞

−∞
e−ikxψ(x) dx = (2π)−1/2

〈
eikx, ψ

〉
L2(R)

,

if we ignore the fact that eikx is not actually in L2.
Indeed, physicists frequently understand the Fourier transform by assert-

ing that the functions eikx/
√
2π form an “orthonormal basis in the contin-

uous sense” for L2(R). Orthonormality in the continuous sense is supposed
to mean that one replaces the usual Kronecker delta in the definition of an
orthonormal set by the Dirac δ-function〈

eikx√
2π
,
eilx√
2π

〉
L2(R)

= δ(k − l), (6.3)

where δ is supposed to satisfy∫ ∞

−∞
f(k)δ(k − l) dk = f(l)

for all continuous functions f . (Rigorously, δ(k − l) is a distribution; see
Appendix A.3.3.)
To give some rigorous meaning to (6.3), note that although the inner

product of eikx and eilx is not defined, we may approximate this inner
product by the expression

1

2π

∫ A

−A
e−ikxeilx dx =

1

2π

e−i(k−l)x

−i(k − l)

∣∣∣∣
A

−A
=
A

π

sin [A(k − l)]

A(k − l)
.

It is possible to show that the above function, viewed as a function of k for
fixed A and l, behaves like δ(k− l) in the limit as A tends to infinity. That
is to say, for all sufficiently nice functions ψ, we have

lim
A→∞

∫ ∞

−∞
ψ(k)

A

π

sin [A(k − l)]

A(k − l)
dk = ψ(l). (6.4)

Here is a heuristic argument for (6.4). By making the change of variable
k′ = k− l, we may reduce the general problem to the case l = 0. If we then
make the change of variable κ = Ak, the desired result is equivalent to

lim
A→+∞

∫ ∞

−∞

1

π

sinκ

κ
f
( κ
A

)
dκ = f(0). (6.5)
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Now, if we can bring the limit inside the integral, f(κ/A) will tend to f(0)
as A tends to infinity. Since the rest of the integrand on the right-hand
side of (6.5) is already independent of A, the result would then follow if we
could show that ∫ ∞

−∞

1

π

sinκ

κ
dκ = 1. (6.6)

Even though the integral in (6.6) is not absolutely convergent, it is a con-
vergent improper integral. The value of the integral can be obtained by the
method of contour integration (or the method of consulting a table of in-
tegrals), and indeed (6.6) holds. Since (6.3) is, in any case, only a heuristic
way of thinking about the Fourier transform, we will not take the time to
develop a rigorous version of the preceding argument.
It is possible to derive, at least formally, many of the standard properties

of the Fourier transform by using (6.3), just as one can obtain properties
of Fourier series by using the orthonormality of the functions e2πinx in
L2([0, 1]). More importantly, the Fourier transform is precisely the unitary
transformation that changes the momentum operator into a multiplication
operator. To see this property of the Fourier transform more clearly, we
introduce a simple rescaling of it.

Definition 6.1 For any ψ ∈ L2(R), define ψ̃ by

ψ̃(p) =
1√
�
ψ̂
(p
�

)
,

so that

ψ̃(p) =
1√
2π�

∫ ∞

−∞
e−ipx/�ψ(x) dx.

The function ψ̃(p) is the momentum wave function associated with ψ.

By the Plancherel theorem (Theorem A.19) and a change of variable, if ψ

is a unit vector, then so is ψ̂ and also ψ̃. For any unit vector ψ, we interpret
|ψ̃(p)|2 as the probability density for the momentum of the particle, just as

|ψ(x)|2 is the probability distribution of the position of the particle. Using
Proposition A.17, we may readily verify that for nice enough ψ, we have

P̃ψ(p) = pψ̃(p). (6.7)

Equation (6.7) means that the unitary map ψ → ψ̃ turns the momentum
operator P into multiplication by p. That is to say, the spectral theorem,
in its “multiplication operator” form, is accomplished in this case by the
Fourier transform (scaled as in Definition 6.1).
In terms of the momentum wave function, we may define spectral pro-

jections and a functional calculus for P , just as in Sect. 6.5. For any Borel
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set E ⊂ R, we may define a projection PE to be the orthogonal projection
onto to the space of functions ψ for which ψ̃(p) is zero almost everywhere
outside of E. If f is any bounded measurable function on R, we can define
an operator f(P ) by defining f(P )ψ to be the unique element of L2(R) for
which

f̃(P )ψ(p) = f(p)ψ̃(p).


