Midterm Quiz
In-class or proctored. No book, notes, electronics, calculator, internet access, or communication with other people. Precise statements of definitions, theorems, and lemmas are expected. Proofs will be graded generously. If you put work on the blank pages at the end, please clearly label any portions which you would want to be graded. 100 points possidle. 65 minutes maximum.

1. Let $(\mathcal{V},\|\cdot\|)$ be a (complex) normed vector space.
(a) (5 pts) Suppose $S \subset \mathcal{V}$. Define what it means for S to be open.
def.
S is open
exists
$C S$.
(b) (5 pts) Let $\left\{v_{n}\right\}$ be a sequence in \mathcal{V}. Define what it means for this sequence to be Cauchy. def: $\left\{u_{n}\right\}$ is cauchy if for all $\varepsilon>0$ there
exists $N \in \mathbb{N}$ so that if $n, m \geq N$ then

$$
\left\|v_{n}-v_{m}\right\|<\varepsilon
$$

2. (5 pts) Let \mathcal{H} be a complex Hilbert space. Define \mathcal{H}^{\prime}, the dual space.
def:

$$
\begin{aligned}
& \mathcal{H}^{\prime}=L(\mathcal{L}, \mathbb{C}) \\
&=\{l: \mathcal{H} \rightarrow \mathbb{C} \mid \quad l \text { is linear } \\
&\text { and continuous }\} \\
& \text { equivienthy, bounded }
\end{aligned}
$$

3. (5 pts) Suppose $1 \leq p \leq \infty$. Define $\ell^{p}=\ell^{p}(\mathbb{N})$ and its norm. (Hint. Separate $p=\infty$.)
def. for $1 \leq p<\infty$:

$$
\begin{aligned}
& l^{p}=\left\{a=\left.\left(a_{1}, a_{2}, \cdots\right)\left|\sum_{n=1}^{\infty}\right| a_{n}\right|^{p}<\infty\right\} \\
& \|a\|_{p}=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{1 / p}
\end{aligned}
$$

for $p=\infty$:

$$
\begin{aligned}
& \ell^{\infty}=\left\{a \mid \exists M \geqslant 0 \text { s.t. }\left|a_{n}\right| \leq M \quad \forall n\right\} \\
& \|a\|_{\infty}=\sup _{n \in \mathbb{N}}\left|a_{n}\right|
\end{aligned}
$$

4. Suppose \mathcal{H} is a complex Hilbert space and $S \subset \mathcal{H}$ is a subset.
(a) (5 pts) Define S^{\perp}, the orthogonal complement of S.
def. $S^{\perp}=\{v \in G H \mid\langle x, v\rangle=0 \quad \forall x \in S\}$
(b) (8 pts) Show that $S^{\perp} \subset \mathcal{H}$ is a subspace.
proof: Suppose $v, w \in S^{t}$ and $\lambda \in \mathbb{C}$.
Then for $x \in S$:

$$
\begin{aligned}
& n \text { for } x \in S: \\
& \langle x, v+\lambda w\rangle=\langle x, v\rangle+\lambda\langle x, w\rangle=0+\lambda 0=0 .
\end{aligned}
$$

Also

$$
\langle x, 0\rangle=0 .
$$

Since $O \in S^{t}$ and S^{t} is closed under addition and scalar multiplication, it is a subspace.
5. (a) $(5 \mathrm{pts}) \quad$ Define $C_{0}^{\infty}(\mathbb{R})$, the vector space of \mathbb{C}-valued smooth functions of compact support.
def:

$$
\begin{aligned}
& C_{0}^{\infty}(\mathbb{R})=\{f: \mathbb{R} \rightarrow \mathbb{C} \mid f^{(n)} \text { exists for all } \\
& n \in \mathbb{R} \\
& \text { and } \exists a<b \text { real } \\
& \text { so that } \\
& f(x)=0 \\
&\text { if } \left.\begin{array}{l}
x \notin[a, b]
\end{array}\right\}
\end{aligned}
$$

$$
n \in \mathbb{N}
$$

(b) (8 pts) Show that if $f, g \in C_{0}^{\infty}(\mathbb{R})$ then

$$
\int_{\mathbb{R}} f^{\prime \prime}(x) g(x) d x=\int_{\mathbb{R}} f(x) g^{\prime \prime}(x) d x
$$

(Hint. Carefully do integration by parts.)
proof: Choose $[a, b]$ so that $f(x)=g(x)=0$ for all $x \notin[a, b]$. (E.g. choose interval containing the intends for f, g.) Then

$$
g(a)=g(a)=0
$$

Note all integands are continuous on $[a, b]$.

$$
\begin{aligned}
& \left.\int_{\mathbb{R}} f^{\prime \prime}(x) g(x) d x=\int_{a}^{b} f^{\prime \prime}(x) g(x) d x=\left[f^{\prime}(x) g^{m}(x)\right]_{a}^{b}-\int_{a}^{b} f^{\prime}(x) g^{\prime}(x)=0\right) \\
& =0-\left(\left[\tilde{f}^{\prime 2}(x) g^{\prime}(x)\right]_{a}^{b}-\int_{a}^{b} f(x) g^{\prime \prime}(x) d x\right) \\
& =-0+\int_{a}^{b} f(x) g^{\prime \prime}(x) d x \\
& =\int_{\mathbb{R}} f(x) g^{\prime \prime}(x) d x \text {. }
\end{aligned}
$$

6. (8 pts) Suppose V, W are (complex) normed vector spaces, and that $T: V \rightarrow W$ is a linear map. Show that if T is bounded then T is continuous.
proof: Let $x \in V$ and $\varepsilon>0$. Since T is bounded, $\|T\|<\infty$. Let $\delta=\varepsilon /\|T\|$. ${ }^{*}$ Then for $y \in B_{\delta}(x) \subset V$ we have

$$
\begin{aligned}
& \text { have } \\
& \left\|T_{y}-T_{x}\right\|_{w} \\
& =\|T(y-x)\|_{w} \leq\|T\| n y-x \| \\
&
\end{aligned}
$$

(* If $\|T\|=0$ use $\delta=\varepsilon$.)
7. (8 pts) Let \mathcal{H} be a complex Hilbert space. Suppose that $P \in \mathcal{L}(\mathcal{H})$ satisfies $P^{2}=P$ and also that $\langle x, P y\rangle=\langle P x, y\rangle$ for all $x, y \in \mathcal{H}$. Show that if $w=P u$ for some $u \in \mathcal{H}$, and if $W=$ range P, then $u-w \in W^{\perp}$.
proof: Let $y \in w$, so $y=P z$ for $z \in \mathscr{T}$.
Then

$$
\begin{aligned}
\langle y, u-w\rangle & =\langle p z, u-w\rangle=\left\langle z, P u-P_{w}\right\rangle \\
& =\left\langle z, P_{u}-p\left(p_{u}\right)\right\rangle=\left\langle z, P_{u}-p^{2} u\right\rangle \\
& =\left\langle z, p_{u}-p_{u}\right\rangle=\langle z, 0\rangle=0
\end{aligned}
$$

Thus $u-w \in W^{+}$(since $y \in W$ was arbibary).

Riesz lemma If \mathscr{H} is a complex Hilbert space with inner product $\langle\cdot \cdot\rangle$, and if $l \in \mathcal{H}^{\prime}$, then thee is a unique $w \in \mathcal{H}$ so that

$$
\ell(u)=\langle\omega, u\rangle
$$

for all $u \in \mathscr{A}$. $\underbrace{\text { Also }\|R\|=\|w\| .}_{\text {entirely optional }}$
9. (8 pts$)$ State the Fundamental Theorem of Calculus. Pay attention to the types of functions
to which the Theorem applies. (No proof is required) to which the Theorem applies. (No proof is required.)
FTC Suppose $f \in L^{\prime}(a, b)$. Then

$$
F(x)=\int_{a}^{x} f(t) d t
$$

is continuous and its derivative exists
a.e. Furthermore

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

and

$$
\frac{d}{d x} F(x)=f(x) \quad \text { a.e. }
$$

10. (11 pts) Let
for $k \in \mathbb{Z}$. Then ϕ_{k} is a continuous, \mathbb{C}-valued function on $[0,1]$, so $\phi_{k} \in L^{2}(0,1)$. (There is no need to prove this.) Show that
$\left\{\phi_{j}(x) \phi_{k}(y)\right\}_{j, k \in \mathbb{Z}}$
is an orthonormal set on $L^{2}(\Omega)$, where $\Omega=(0,1)^{2}$.
proof. Let $j, k, r, s \in \mathbb{Z}$. Note

$$
\int_{0}^{1} \overline{\phi_{j}(x)} \phi_{k}(x) d x=\int_{0}^{1} e^{i 2 \pi(k-j) x} d x= \begin{cases}1, & j=k \\ 0, & \text { othenise }\end{cases}
$$

since $\left[e^{i 2 \pi(k-j) x} / 2 \pi(k-j)\right]_{0}^{1}=0$ if $k-j \neq 0$. $=\delta_{j k}$
Thus ($*=$ by Fubini's the area, but you don't need to say if)

$$
\begin{aligned}
& \int_{\Omega} \overline{\phi_{j}(x) \phi_{k}(y)} \phi_{r}(x) \phi_{s}(y) d x d y \\
\stackrel{*}{=} & \int_{0}^{1} \int_{0}^{1} \overline{\phi_{j}(x)} \phi_{r}(x) \overline{\phi_{k}(y)} \phi_{s}(y) d x d y \\
\stackrel{*}{=} & \left(\int_{0}^{1} \overline{\phi_{j}(x)} \phi_{r}(x) d x\right)\left(\int_{0}^{1} \overline{\phi_{k}(y)} \phi_{s}(y) d y\right) \\
= & \delta_{j r} \delta_{k s} .
\end{aligned}
$$

So if $\Phi_{j k}(x, y)=\phi_{j}(x) \phi_{k}(y)$ then

$$
\left\langle\Phi_{j k}, \Phi_{r s}\right\rangle_{L^{2}(\Omega)}= \begin{cases}1, & j=r \text { and } k=s \\ 0, & \text { otherwise, }\end{cases}
$$

so $\left\{\Phi_{j k}\right\}_{j k \in E}$ is an ON sot.
11. (11 pts) Let $\mathcal{H}=\ell^{2}$ and suppose $R \in \mathcal{L}(\mathcal{H})$ is the right-shift operator
$R\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(0, a_{1}, a_{2}, a_{3}, \ldots\right)$.
(There is no need to prove that $R \in \mathcal{L}(\mathcal{H})$.) Show that R has no eigenvalues.
proof Suppose $R_{a}=\lambda a$ for $a \in \mathscr{t}$ and $\lambda \in \mathbb{C}$. If $\lambda=0$ then

$$
R a=\left(0, a_{1}, a_{2}, a_{3}, \ldots\right)=(0,0,0, \ldots)
$$

so $a_{1}=a_{2}=a_{3}=\cdots=0$, so $a=0$. Thus $\lambda=0$ is not an eigenvalue.

If $\lambda \neq 0$ then

$$
R a=\left(0, a_{1}, a_{2}, a_{3}, \ldots\right)=\left(\lambda a_{1}, \lambda a_{2}, \lambda a_{3}, \ldots\right)=\lambda a \text {. }
$$

But then $\lambda a_{1}=0$ so $a_{1}=0$. And $\lambda a_{2}=a_{1}$ so $a_{2}=a_{1} / \lambda=0 / \lambda=0$. Continuing by induction) $\lambda a_{n+1}=a_{n}$ and $a_{n}=0$ so $a_{n+1}=a_{n} / \lambda=\frac{0}{\lambda}$
$=0$. In conclusion $a_{n}=0$ for all $n \in \mathbb{N}$
so $a=0$, so λ is not an eigenvalue. $]$

Extra Credit. (4 pts) The ON set $\left\{\phi_{j}(x) \phi_{k}(y)\right\}$ in problem 10, for $j, k \in \mathbb{Z}$, is actually an ON basis of $L^{2}(\Omega)$ where $\Omega=(0,1)^{2}$. Furthermore this basis diagonalizes the Laplacian operator

$$
L u=u_{x x}+u_{y y} .
$$

We will see that L is an unbounded operator on $L^{2}(\Omega)$. (There is no need to prove any of the previous statements.) Find all the eigenvalues of L.

Since $\left\{\Phi_{j k}(x, y)\right\}=\left\{\phi_{j}(x) \phi_{k}(y)\right\}$ diagonalizes L, we can simply apply L :

$$
\begin{aligned}
L \Phi_{j k} & =\left(\Phi_{j k}\right)_{x x}+\left(\Phi_{j k}\right)_{y y} \\
& =(i 2 \pi j)^{2} \Phi_{j k}+(i 2 \pi k)^{2} \Phi_{j k} \\
& =-4 \pi^{2}\left(j^{2}+k^{2}\right) \Phi_{j k}
\end{aligned}
$$

So

$$
\sigma(L)=\left\{-4 \pi^{2}\left(j^{2}+k^{2}\right)\right\}_{j, k \in \mathbb{Z}} .
$$

= spectrum of L (which is the set of eigenvalues in this case)
(Note that many eigenvalues have large multiplicity. $E_{0 g} \cdot \lambda=-16 \pi^{2}$ is for $\Phi_{-2,0}, \Phi_{2,0}, \Phi_{0,-2,} \Phi_{0,2}$; multiplicity $=4$.)

