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Math 617 Functional Analysis (Bueler) Wednesday 20 March 2024

Midterm Quiz

In-class or proctored. No book, notes, electronics, calculator, inter-
net access, or communication with other people. Precise statements of
definitions, theorems, and lemmas are expected. Proofs will be graded
generously. If you put work on the blank pages at the end, please clearly
label any portions which you would want to be graded. 100 points pos-
sible. 65 minutes maximum.

1. Let (V,||-]]) be a (complex) normed vector space.

(a) (5 pts)  Suppose S C V. Define what it means for S to be open.
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(b) (5 pts)  Let {v,} be a sequence in V. Define what it means for this sequence to be Cauchy.
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2. (5 pts)  Let H be a complex Hilbert space. Define H’, the dual space.
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3. (5pts) Suppose 1 < p < co. Define 2 = (?(N) and its norm. (Hint. Separate p = 0c.)
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4. Suppose H is a complex Hilbert space and S C H is a subset.
(a) (5 pts)  Define S+, the orthogonal complement of S.
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(b) (8 pts)  Show that S+ C H is a subspace.
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5. (a) (5 pts)  Define C§°(R), the vector space of C-valued smooth functions of compact
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(b) (8 pts)  Show that if f, g € C§°(R) then
[ @@= [ s @ .

(Hint. Carefully do integration by parts.)
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6. (8pts) Suppose V,W are (complex) normed vector spaces, and that T : V' — W is a linear
map. Show that if 7" is bounded then T is continuous.
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7. (8 pts) Let H be a complex Hilbert space. Suppose that P € L(H) satisfies P> = P
and also that (z, Py) = (Px,y) for all z,y € H. Show that if w = Pu for some u € H, and if
W = range P, then u —w € W+,
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8. (8pts)  State the Riesz lemma. (No proof is required.)
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9. (8pts) State the Fundamental Theorem of Calculus. Pay attention to the types of functions
to which the Theorem applies. (No proof is required.)
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10. (11 pts)  Let
Qbk( ) 2 kx

for k € Z. Then ¢, is a continuous, C-valued function on [0,1], so ¢, € L?(0,1). (There is no
need to prove this.) Show that

{#; (f)ﬁbk(y)}j,kez

is an orthonormal set on L*(Q), where 2 = (0, 1)
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11. (11 pts) Let H = ¢* and suppose R € L(H) is the right-shift operator
R(al, ag, as, ... ) = (O, ai, g, as, ... )

(There is no need to prove that R € L(H).) Show that R has no eigenvalues.
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Extra Credit. (4 pts)  The ON set {¢;(x)¢x(y)} in problem 10, for j, k € Z, is actually an
ON basis of L?(2) where © = (0,1)%. Furthermore this basis diagonalizes the Laplacian operator

Lu = gy + Uy,

We will see that L is an unbounded operator on L*(2). (There is no need to prove any of the
previous statements.) Find all the eigenvalues of L.

Since 12,6593 =F 8,09 4,98 dhagonalizes L,
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