Worksheet: Double and triple integrals!

1. Suppose $A=\left\{(x, y) \mid 1 \leq x^{2}+y^{2} \leq 4\right\}$. Write the double integral as an iterated integral, and evaluate it:

$$
\iint_{A} \sqrt{x^{2}+y^{2}} d A=
$$

(Hint. Sketch A. You can do the integral in polar coordinates!)

$$
\begin{aligned}
& =\int_{\theta=0}^{2 \pi} \int_{r=1}^{2} r \cdot r d r d \theta \\
& =2 \pi \int_{1}^{2} r^{2} d r=2 \pi\left[\frac{r^{3}}{3}\right]_{1}^{2}=2 \pi\left(\frac{8}{3}-\frac{1}{3}\right) \\
& =\frac{14 \pi}{3}
\end{aligned}
$$

2. The set $E=[0,1] \times[1,2] \times[2,3]$ is a cube. Write the triple integral as an iterated integral, and

$$
\begin{aligned}
& \iint_{\varepsilon}^{x+y d V}=\int_{x=0}^{1} \int_{y=1}^{2} \int_{z=2}^{3} x+y d z d y d x \\
& =\int_{0}^{1} \int_{1}^{2}(x+y)(3-2) d y d x=\int_{0}^{1}\left(\int_{1}^{2} x+y d y\right) d x \\
& =\int_{0}^{1}\left[x y+\frac{y^{2}}{2}\right]_{1}^{2} d x=\int_{0}^{1}\left[2 x+2-\left(x+\frac{1}{2}\right)\right] d x \\
& =\int_{0}^{1} x+\frac{3}{2} d x=\left[\frac{x^{2}}{2}+\frac{3}{2} x\right]_{0}^{1}=\frac{1}{2}+\frac{3}{2}=2
\end{aligned}
$$

3. A right pyramid R has a base in the x, y plane which is the square $[-1,1] \times[-1,1]$, and its tip is at the point $(0,0,1)$. Its density increases as one approaches the tip, namely $\rho(x, y, z)=1+z$, in mass per volume units. Find the total mass.

$$
\begin{aligned}
& M=\iiint_{R} 1+z d V \\
& =\int_{z=0}^{z=1} \int_{x=z-1}^{x=1-z} \int_{y=z-1}^{y=1-z} 1+z d y d x d z \\
& \frac{\underset{N}{U}}{\underset{U}{U}}=\int_{0}^{1}(1+z)\binom{\text { area of s quasi }}{[z-1,1-z] \times[z-1,1-z]} d z \\
& \frac{C^{\prime}}{\dot{U}}=\int_{0}^{1}(1+z)\left((1-z-z+1)^{2}\right) d z=2^{2} \int_{0}^{1}(1+z)(1-z)^{2} d z=4 \int_{0}^{1}\left(1-z^{2}\right)(1-z) d z
\end{aligned}
$$

4. Find the volume of the sphere of radius one by setting-up either a double or a triple integral, $=4 \int_{0}^{1} 1-z-z^{2}$ and evaluating it. Of course, the answer you should get is $V=4 \pi / 3$.

$$
\begin{aligned}
& V=2 \int_{\theta=0}^{2 \pi} \int_{r=0}^{1} \sqrt{1-r^{2}} r d r d \theta=4 \pi \int_{0}^{1}\left(1-r^{2}\right)^{1 / 2} r d r \\
& =4 \pi \int_{1}^{0} u^{1 / 2} \frac{d u}{-2}=2 \pi \int_{0}^{1} u^{1 / 2} d u=2 \pi\left[\frac{2}{3} u^{3 / 2}\right]_{0}^{1}=\frac{4 \pi}{3} \\
& V=\int_{x=-1}^{x=1} \int_{y=-\sqrt{1-x^{2}}}^{y=\sqrt{1-x^{2}}} \int_{z=-\sqrt{1-x^{2}-y^{2}}}^{z=+\sqrt{1-x^{2}-y^{2}}} 1 d z d y d x \text { wisc to switch polar } \\
& =\int_{-1}^{1} \int_{y=-\sqrt{1-x^{2}}}^{y=\sqrt{1-x^{2}}} 2 \sqrt{1-x^{2}-y^{2}} d y d x=\int_{\theta=0}^{2 \pi} \int_{r=0}^{1} 2 \sqrt{1-r^{2}} r d r d \theta \\
& =\cdots=4 \pi / 3
\end{aligned}
$$

