1. Evaluate the double (iterated) integral:

$$
\begin{aligned}
& \int_{0}^{\pi} \int_{0}^{\pi / 2} \cos x \sin (3 y) d x d y=\int_{0}^{\pi}\left(\int_{0}^{\pi / 2} \cos x d x\right) \sin (3 y) d y \\
& \left.=\int_{0}^{\pi}(\sin x]_{0}^{\pi / 2}\right) \sin 3 y d y \\
& \left.=1 \cdot \int_{0}^{\pi} \sin 3 y d y=-\frac{1}{3} \cos (3 y)\right]_{0}^{\pi}=-\frac{1}{3}(-1-1)=\frac{2}{3}
\end{aligned}
$$

2. Evaluate the double (iterated) integral:

$$
\begin{aligned}
& \int_{1}^{2} \int_{3}^{4} x^{5}+y^{6} d y d x=\int_{1}^{2}\left(\int_{3}^{4} x^{5}+y^{6} d y\right) d x \\
& =\int_{1}^{2}\left[x^{5} y+\frac{y^{7}}{7}\right]_{3}^{4} d x=\int_{1}^{2} 4 x^{5}+\frac{4^{7}}{7}-3 x^{5}-\frac{3^{7}}{7} d x \\
& \left.=\frac{x^{6}}{6}+\frac{4^{7}-3^{7}}{7} x\right]_{1}^{2}=\frac{2^{6}}{6}+\frac{4^{7}-3^{7}}{7} \cdot 2-\frac{1}{6}-\frac{4^{7}-3^{7}}{7} \cdot 1 \\
& =\frac{2^{6}-1}{6}+\frac{4^{7}-3^{7}}{7}
\end{aligned}
$$

3. Write the integral as an iterated integral in the two different ways: $\iint_{R} e^{\cos (x y)} x^{2} d A \quad$ where $R=[0,1] \times[-1,1]$

$$
=\int_{-1}^{1} \int_{0}^{1} e^{\cos (x y)} x^{2} d x d y
$$

or

$$
=\int_{0}^{1} \int_{-1}^{1} e^{\cos (x y)} x^{2} d y d x
$$

\int I don't know how to do either of these by hand. And it was not requested.
4. Apply the midpoint rule to estimate the integral. Use $m=2$ points in the x-direction and $n=2$ points in the y-direction

$$
\iint_{R} \frac{1}{x y} d A \quad \text { where } R=[1,2] \times[1,3]
$$

$$
\begin{aligned}
& \cong \Delta x \Delta y(f(1.25,1.5) \\
&+f(1.75,1.5) \\
&+f(1.25,2.5) \\
&+f(1.75,2.5)) \\
&=0.5\left(\frac{1}{(1.25)(1.5)}+\frac{1}{(1.75)(1.5)}\right.
\end{aligned}
$$

$$
\left.+\frac{1}{(.25)(2.5)}+\frac{1}{(1.75)(2.5)}\right)
$$

I wed $m=100, n=200$ in Matlab to get $\iint_{R} \frac{1}{x y} d A \approx 0.761494$
versus $(\ln 3)(\ln 2)=0.761500$ fin below.
5. Compute the integral in problem 4 exactly. How close is the midpoint rule estimate?

$$
\begin{aligned}
& \int_{1}^{2} \int_{1}^{3} \frac{1}{x y} d y d x=\int_{1}^{2}\left(\int_{1}^{3} \frac{1}{x y} d y\right) d x \\
= & \int_{1}^{2} \frac{1}{x}[\ln y]_{1}^{3} d x=\ln 3 \int_{1}^{2} \frac{1}{x} d x \\
= & \ln 3[\ln x]_{1}^{2}=(\ln 3)(\ln 2)=0.7615
\end{aligned}
$$

