Worksheet: Limits of functions of 2 or $\mathbf{3}$ variables

1. Compute the limit:

$$
\lim _{(x, y) \rightarrow(2,3)} \frac{1}{y}-\frac{4}{x}=\frac{1}{3}-\frac{4}{2}=\frac{1}{3}-2=-\frac{5}{3}
$$

easy became $f(x, y)=\frac{1}{y}-\frac{4}{x}$
is continuous at $(2,3)$
2. Compute the limit: $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-x y}{\sqrt{x}+\sqrt{y}} \frac{0}{0} \lim _{(x, y) \rightarrow(0,0)} \frac{x(x-y)}{\sqrt{x}+\sqrt{y}}$

$$
=\lim _{(x, y) \rightarrow(0,0)} \frac{\left.x(\sqrt{x})^{2}-(\sqrt{y})^{2}\right)}{\sqrt{x}+\sqrt{y}}=\lim _{(x, y) \rightarrow(0,0)} \frac{x(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})}{\sqrt{x}+\sqrt{y}}
$$

 3. Where is the function $f(x, y)=\frac{1}{y(x-1)}$ continuous? Fin and lake latch
$f(x, y)$ is continuous
where it is defined:

$$
\{(x, y) \mid y \neq 0 \text { and } x \neq 1\}
$$

4. Where is the function $g(x, y, z)=\frac{1}{x^{2}+z^{2}-1}$ and sketch andinuous? Find the largest region.
$g(x, y, z)$ is continuous
where it is defined:
note:

$$
\left\{(x, y, z) \mid x^{2}+z^{2} \neq 1\right\}
$$

$$
x^{2}+z^{2}=1
$$

is a

5. If $f(x, y)=x^{2}-3 y$, find the limit: $\lim _{h \rightarrow 0} \frac{f(1+h, y)-f(1, y)}{h}=$

$$
\begin{aligned}
& \text { 5. If } f(x, y)=x^{2}-3 y, \text { find the limit: } \lim _{h \rightarrow 0} \frac{f(1+h, y)-f(1, y)}{h}=\lim _{h \rightarrow 0} \frac{(1+h)^{2}-3 y-[1-3 y]^{2}}{h}=\lim _{h \rightarrow 0} \frac{(3 y-Y+2 y}{h} \\
& =\lim _{h \rightarrow 0} \frac{K(2+h)}{h}=\lim _{h \rightarrow 0} 2+h=2+0=2
\end{aligned}
$$

