Math 253: Quiz 9

Name:

SOLUTIONS

/ 25

30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [4 points] Sketch the vector field $\mathbf{F}(x, y) = \mathbf{i} - \mathbf{j}$. Describe the vector field in a sentence. (*Draw at least 6 vectors in your sketch. Regarding the sentence, what is the length of the vectors, and their directions?)*

2. [3 points] Compute the gradient vector field of $f(x, y, z) = xy - yz + z^3$.

 $\nabla f(x) = \langle s_x, f_y, s_z \rangle$ 'y, x-z, -y+ 3z2>

Math 253: Quiz 9

Thursday 13 April, 2023

3. [6 points] Find the work done by the force field $\mathbf{F}(x,y) = -2y\mathbf{i} + 2x\mathbf{j} + (x+y)\mathbf{k}$ in moving an object along the curve $\mathbf{r}(t) = \cos(t)\mathbf{i} + \sin(t)\mathbf{j} - 3\mathbf{k}$, where $0 \le t \le \pi$.

$$W = \int_{C} \vec{F} \cdot d\vec{r} = \int_{0}^{T} \langle -2g(t), 2\pi(t), \pi(t) + g(t) \rangle$$

$$\frac{d\vec{t}}{dt} dt \qquad \cdot \langle -sin(t), cos(t), o \rangle dt$$

$$= \int_{0}^{T} + 2sin(t)sin(t) + 2cos(t)cos(t) + (c) \delta dt$$

$$= 2\int_{0}^{T} sin^{2}t + cos^{2}t dt = 2\int_{0}^{T} dt$$

$$= (2\pi)$$

4. [3 points] Find $\mathbf{T}(t)$, the unit tangent vector field, for the curve $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$.

 $\frac{\langle 1, 2t, 3t^2 \rangle}{\sqrt{1+4t^2+9t^4}}$ $\overline{T}(t) = \frac{\overline{r}'(t)}{\|\overline{r}'(t)\|}$

5. [6 points] Evaluate the line integral $\int_C f(x, y) ds$ of the scalar function f(x, y) = x + y along the straight-line path connecting the origin to the point (1,1).

6. [3 points] Consider the vector fields $\mathbf{F} = -y\mathbf{i} + x\mathbf{j}$, $\mathbf{G} = x\mathbf{i} + y\mathbf{j}$, and $\mathbf{H} = x\mathbf{i} - y\mathbf{j}$. Match \mathbf{F} , \mathbf{G} , \mathbf{H} to their graphs below. In particular, write the variable name below the matching graph.

Math 253: Quiz 9

Thursday 13 April, 2023

Extra Credit. [1 point] I claim $\mathbf{F}(x, y) = \langle e^x, y + e^x \rangle$ is a conservative vector field. Find a potential f(x,y). F is not conservative Sorry because $P=e^{x}$, $Q=y+e^{x}$ $P_y = 0 \neq Q_x = e^x$ and I suppose I meant $\tilde{F} = \langle ye^{\chi}, y + e^{\chi} \rangle$ Then $P_y = e^x = Q_x$. Then $f_x = ye^x$ so $f(x,y) = ye^{x} + g(y)$. So $e^{x} + g'(y) = fy = y + e^{x}$. EXTRA SPACE FOR ANSWERS Then g'(y) = ySo $g(y) = \frac{y^2}{2} + C$ So $(f(x,y)) = ye^{x}$