Name: \qquad
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [4 points] Sketch the vector field $\mathbf{F}(x, y)=\mathbf{i}-\mathbf{j}$. Describe the vector field in a sentence. (Draw at least 6 vectors in your sketch. Regarding the sentence, what is the length of the vectors, and their directions?)

The vector field has constant length $\sqrt{2}$ and always points south east.

τ or something like that...
2. [3 points] Compute the gradient vector field of $f(x, y, z)=x y-y z+z^{3}$.

$$
\begin{aligned}
\nabla f(x) & =\left\langle f_{x}, f_{y}, f_{z}\right\rangle \\
& =\left\langle y, x-z,-y+3 z^{2}\right\rangle
\end{aligned}
$$

3. [6 points] Find the work done by the force field $\mathbf{F}(x, y)=-2 y \mathbf{i}+2 x \mathbf{j}+(x+y) \mathbf{k}$ in moving an object along the curve $\mathbf{r}(t)=\underbrace{\cos (t)}_{x(t)} \mathbf{i}+\underbrace{\sin (t)}_{y(t)} \mathbf{j}-3 \mathbf{z}$, where $0 \leq t \leq \pi$.

$=2 \int_{0}^{\pi} \sin ^{2} t+\cos ^{2} t d t=2 \int_{0}^{\pi} d t$

4. [3 points] Find $\mathbf{T}(t)$, the unit tangent vector field, for the curve $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$.

5. [6 points] Evaluate the line integral $\int_{C} f(x, y) d s$ of the scalar function $f(x, y)=x+y$ along the straight-line path connecting the origin to the point $(1,1)$.

$$
\begin{array}{ll}
& \int_{c} f(x, y) d s \in \begin{array}{ll}
\text { remember: } & \frac{d s}{d t}=\left\|\vec{r}^{\prime}(t)\right\|
\end{array} \\
=\int_{t=0}^{t=1} f(x(t), y(t)) \frac{d s}{d t} d t & C: \vec{r}(t)=\langle t, t\rangle \\
= & 0 \leq t \leq 1
\end{array}
$$

6. [3 points] Consider the vector fields $\mathbf{F}=-y \mathbf{i}+x \mathbf{j}, \mathbf{G}=x \mathbf{i}+y \mathbf{j}$, and $\mathbf{H}=x \mathbf{i}-y \mathbf{j}$. Match $\mathbf{F}, \mathbf{G}, \mathbf{H}$ to their graphs below. In particular, write the variable name below the matching graph.

same as $\vec{r}=\langle x, y\rangle$

3

check
along axes?

T not the! Sorry!

$$
\begin{aligned}
& =\text { cause } \\
& P=e^{x}, Q=y+e^{x}
\end{aligned}
$$

and

$$
P_{y}=0 \neq Q_{x}=e^{x}
$$

I suppose I meant " $\vec{F}=\left\langle y e^{x}, y+e^{x}\right\rangle$ ".
Then $P_{y}=e^{x}=Q_{x}$. Then $f_{x}=y e^{x}$ so $f(x, y)=y e^{x}+g(y)$. So $e^{x}+g^{\prime}(y)=f y=y+e^{x}$.
extras sect forensweres Then $g^{\prime}(y)=y$
So $g(y)=\frac{y^{2}}{2}+c$
So $f(x, y)=y e^{x}+\frac{y^{2}}{2}$
$+c$

