Math 253: Quiz 8

Name: \qquad
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [5 points] Find the area of one leaf of the rose $r=\sin (2 \theta)$, which is shown in the figure.
$A=\iint 1 d A$

$$
=\sin (2 \pi / 2)
$$

$$
=\int^{\pi / 2} \int_{n-1}^{D} 1 r(\sin (\theta) 1 r d \theta
$$

$$
=0
$$

$$
=\int_{0}^{\pi / 2}\left[\frac{r^{2}}{2}\right]_{0}^{\sin (2 \theta)} d \theta=\frac{1}{2} \int_{0}^{\pi / 2} \sin ^{2}(2 \theta) d \theta
$$

$$
\begin{aligned}
& =\frac{1}{4} \int_{0}^{\pi / 2} 1-\cos (4 \theta) d \theta=\frac{1}{4}\left[\theta-\frac{1}{4} \sin (4 \theta)\right]_{0}^{\pi / 2} \\
& =\frac{1}{4}[\pi / 2-0-(0-0)]=\pi / 8
\end{aligned}
$$

$$
\theta=0 \quad r=0
$$

2. [5 points] Convert the integral to polar coordinates. There is no need to evaluate the integral!
(Hint. Sketch the region of integration, which tells you the limits on the r, θ integrals.)

$$
\begin{aligned}
& \int_{0}^{4} \int_{-\sqrt{16-x^{2}}}^{+\sqrt{16-x^{2}}} \arctan \left(x^{2}+y^{2}\right) d y d x= \\
& =\iint_{D} \arctan \left(r^{2}\right) r d r d \sigma \\
& \xrightarrow[4]{y=\sqrt{4^{2}-x^{2}}} \\
& =\underbrace{\int_{\theta=-\pi / 2}^{\pi / 2} \int_{r=0}^{4} \arctan \left(r^{2}\right) r d r d \theta}=\pi \int_{\substack{\uparrow \\
\text { eacytodo } \\
\theta \text { interest, if you out }}}^{4} \arctan \left(r^{2}\right) r d r
\end{aligned}
$$

3. [5 points] Using mathematically-correct steps, show that:

$$
\int_{a}^{b} \int_{c}^{d} \int_{e}^{f} F^{\prime}(x) G^{\prime}(y) H^{\prime}(z) d z d y d x=[F(b)-F(a)][G(d)-G(c)][H(f)-H(e)]
$$

(Hint. Start on the left. What terms can be moved out of the inner integrals? What do you know about the integral of a derivative?)

$$
\begin{aligned}
& \int_{a}^{b} \int_{c}^{d} \int_{e}^{f} F^{\prime}(x) G^{\prime}(y) H^{\prime}(z) d z d y d x \\
& =\int_{a}^{b} \int_{c}^{d} F^{\prime}(x) G^{\prime}(y)\left(\int_{e}^{f} H^{\prime}(z) d z\right) d y d x \\
& \left.=\int_{a}^{b} F^{\prime}(x) d x\right)\left(\int_{c}^{d} G^{\prime}(y) d y\right)\left(S_{e}^{f} H^{\prime}(z) d z\right) \\
& \bar{j}[F(b)-F(a)][G(d)-G(c)][H(f)-H(e)]
\end{aligned}
$$

4. [5 points] Assume $B=\{(x, y, z) \mid 1 \leq x \leq 2,0 \leq y \leq 2,1 \leq z \leq 3\}$. Evaluate the triple integral:

$$
\begin{aligned}
& \int\|\| \sqrt{m x d V}= \\
= & \int_{x=1}^{2} \int_{y=1}^{2} \int_{0}^{2} \int_{0}^{2} x y\left(S_{1}^{3} d z\right) d y d x=2 \int_{1}^{3} \int_{0}^{2} x y d y d x \\
= & 2 \int_{1}^{2} x\left[\frac{y^{2}}{2}\right]_{0}^{2} d x=2 \cdot 2 \int_{1}^{2} x d x \\
= & 4\left[\frac{x^{2}}{2}\right]_{1}^{2}=\frac{4}{2}\left(2^{2}-1^{2}\right)=2(3)=6
\end{aligned}
$$

5. [5 points] A solid object is shown. It is the set in the first octant which bounded by $z=1-x^{2}$ and the plan $y=5$. Supposing its density is $\rho(x, y, z)=1+x+y$, completely set yp a triple integral to find its total mass.

\qquad
EXTRA SPACE FOR ANSWERS

$$
\begin{aligned}
& M=\int_{x=0}^{1} \int_{y=0}^{5} \int_{z=0}^{1-x^{2}} 1+x+y d z d y d x \\
& =\int_{0}^{1} \int_{0}^{5}(1+x+y)[z]_{0}^{1-x^{2}} d y d x \\
& =\int_{0}^{1} \int_{0}^{5}(1+x+y)\left(1-x^{2}\right) d y d x=\int_{0}^{1} \int_{0}^{5} 1-x^{2}+x-x^{3}+y\left(1-x^{2}\right) d y d x \\
& =\int_{0}^{1}\left[\left(1-x^{2}+x-x^{3}\right) y+\left(1-x^{2}\right) \frac{y^{2}}{2}\right]_{0}^{5} d x \\
& =\int_{0}^{1} 5\left(1-x^{2}+x-x^{3}\right)+\frac{25}{2}\left(1-x^{2}\right) d x \\
& =\left[5\left(x-\frac{x^{3}}{3}+\frac{x^{2}}{2}-\frac{x^{4}}{4}\right)+\frac{25}{2}\left(x-\frac{x^{3}}{3}\right)\right]_{0}^{1} \\
& =5\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}\right)+\frac{25}{2}\left(1-\frac{1}{3}\right) \\
& =5\left(\frac{12-4+6-3}{12}\right)+\frac{25}{2} \cdot \frac{2}{3}=\frac{5}{4}\left(\frac{11}{12}\right)+\frac{25}{3} \\
& =5 \frac{155}{25 \cdot 4}=12
\end{aligned}
$$

