Name:

30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [5 points] Find the area of one leaf of the rose $r=\sin (2 \theta)$, which is shown in the figure.

2. [5 points] Convert the integral to polar coordinates. There is no need to evaluate the integral! (Hint. Sketch the region of integration, which tells you the limits on the r, θ integrals.)

$$
\int_{0}^{4} \int_{-\sqrt{16-x^{2}}}^{+\sqrt{16-x^{2}}} \arctan \left(x^{2}+y^{2}\right) d y d x=
$$

Math 253: Quiz 8
3. [5 points] Using mathematically-correct steps, show that:

$$
\int_{a}^{b} \int_{c}^{d} \int_{e}^{f} F^{\prime}(x) G^{\prime}(y) H^{\prime}(z) d z d y d x=[F(b)-F(a)][G(d)-G(c)][H(f)-H(e)]
$$

(Hint. Start on the left. What terms can be moved out of the inner integrals? What do you know about the integral of a derivative?)
4. [5 points] Assume $B=\{(x, y, z) \mid 1 \leq x \leq 2,0 \leq y \leq 2,1 \leq z \leq 3\}$. Evaluate the triple integral: $\iiint_{B} x y d V=$
5. [5 points] A solid object is shown. It is the set in the first octant which bounded by $z=1-x^{2}$ and the plane $y=5$. Supposing its density is $\rho(x, y, z)=1+x+y$, completely set up a triple integral to find its total mass.

Extra Credit. [1 point] Compute and fully simplify the integral in problem 5.

