Name: _

/ 25

30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [5 points] Find the area of one leaf of the rose $r = \sin(2\theta)$, which is shown in the figure.

2. [5 points] Convert the integral to polar coordinates. There is no need to evaluate the integral! (Hint. Sketch the region of integration, which tells you the limits on the r, θ integrals.)

$$\int_{0}^{4} \int_{-\sqrt{16-x^{2}}}^{+\sqrt{16-x^{2}}} \arctan(x^{2}+y^{2}) \, dy \, dx =$$

Math 253: Quiz 8

3. [5 points] Using mathematically-correct steps, show that:

$$\int_{a}^{b} \int_{c}^{d} \int_{e}^{f} F'(x)G'(y)H'(z)\,dz\,dy\,dx = [F(b) - F(a)]\,[G(d) - G(c)]\,[H(f) - H(e)]$$

(**Hint.** Start on the left. What terms can be moved out of the inner integrals? What do you know about the integral of a derivative?)

4. [5 points] Assume $B = \{(x, y, z) \mid 1 \le x \le 2, 0 \le y \le 2, 1 \le z \le 3\}$. Evaluate the triple integral:

$$\iiint_B xy \, dV =$$

Math 253: Quiz 8

Thursday 30 March, 2023

5. [5 points] A solid object is shown. It is the set in the first octant which bounded by $z = 1 - x^2$ and the plane y = 5. Supposing its density is $\rho(x, y, z) = 1 + x + y$, completely set up a triple integral to find its total mass.

EXTRA SPACE FOR ANSWERS

Math 253: Quiz 8

Extra Credit. [1 point] Compute and fully simplify the integral in problem 5.