Name: \qquad
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [5 points] Evaluate the iterated (double) integral:

$$
\begin{aligned}
& \int_{1}^{2} \int_{0}^{2} \frac{\sqrt{x}}{x^{2}} d d x=\int_{1}^{2} \frac{1}{x^{2}}\left[\frac{2}{3} y^{3 / 2}\right]_{0}^{9} d x=\int_{1}^{2} x^{-2}\left(\frac{2}{3} \cdot 3^{3}\right) d x \\
& =18 \int_{1}^{2} x^{-2} d x=18\left[-x^{-1}\right]_{1}^{2}=18\left[-\frac{1}{2}+1\right]
\end{aligned}
$$

2. [5 points] Set up, but do not evaluate, a double integral to compute the area of the region between the graph $x=\frac{1}{2} y^{2}$ and the graph $y=\tan x$, over the interval $0 \leq y \leq 1$. (Hint. Carefully sketch the region.)

3. [8 points] Consider the surface $z=x^{2}+y^{2}$ and the region $R=\{(x, y) \mid-1 \leq x \leq 1,-1 \leq y \leq 1\}$.
a) Sketch the surface.

b) Sketch the region R.
 $c=x^{2}+y^{2}$
c) Find the volume under the surface and above the region R.

4. [7 points] Suppose we have a plate of metal in the shape of a quarter circle, bounded by the curves $x=0, y=0$, and $x^{2}+y^{2}=4$. Find the average temperature of the plate if the temperature is given by the function $T(x, y)=10 x$.

$$
\begin{aligned}
& =\frac{10}{\pi} \int_{4}^{0} \sqrt{n} \frac{d u}{-2}=\frac{5}{\pi} \int_{0}^{4} u^{1 / 2} d u \\
& =\frac{5}{\pi}\left[\frac{2}{3} u^{3 / 2}\right]_{0}^{4}=\frac{5}{\pi} \cdot \frac{2}{3} \cdot 2^{3}=\frac{80}{3 \pi}
\end{aligned}
$$

Extra Credit. [1 point] Suppose $f(x)$ is any continuous function and consider the domain

$$
D=\{(x, y) \mid a \leq x \leq b, f(x) \leq y \leq f(x)+1\}
$$

Use a double integral to show that the area of D is just $A_{D}=b-a$.
 \int^{b} a $y=f(x)$ $\int_{a}^{b}[y]_{f(x)}^{f(x)+1} d x=\int_{a}^{b} f(x)+1-f(x) d x$ $=\int_{a}^{b} 1 d x=b-a$
\qquad
EXTRA SPACE FOR ANSWERS
(

