Name:
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [5 points] Evaluate the iterated (double) integral:

$$
\int_{1}^{2} \int_{0}^{9} \frac{\sqrt{y}}{x^{2}} d y d x=
$$

2. [5 points] Set up, but do not evaluate, a double integral to compute the area of the region between the graph $x=\frac{1}{2} y^{2}$ and the graph $y=\tan x$, over the interval $0 \leq y \leq 1$. (Hint. Carefully sketch the region.)

Math 253: Quiz 7

3. [8 points] Consider the surface $z=x^{2}+y^{2}$ and the region $R=\{(x, y) \mid-1 \leq x \leq 1,-1 \leq y \leq 1\}$.
a) Sketch the surface.
b) Sketch the region R.
c) Find the volume under the surface and above the region R.
4. [7 points] Suppose we have a plate of metal in the shape of a quarter circle, bounded by the curves $x=0, y=0$, and $x^{2}+y^{2}=4$. Find the average temperature of the plate if the temperature is given by the function $T(x, y)=10 x$.

Extra Credit. [1 point] Suppose $f(x)$ is any continuous function and consider the domain

$$
D=\{(x, y) \mid a \leq x \leq b, f(x) \leq y \leq f(x)+1\}
$$

Use a double integral to show that the area of D is just $A_{D}=b-a$.

