"ames ane SOLUTIONS
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [7 points] Consider the function $f(x, y)=e^{x} \cos y$.
a) Compute the gradient $\nabla f(x, y)$.

b) Compute the directional derivative of f at the point $P\left(1, \frac{\pi}{2}\right)$ in the direction $\mathbf{v}=-\mathbf{i}$.

2. [5 points] Find the maximum rate of change of $f(x, y)=x \ln y$ at the point $(2,1)$, and the direction in which it occurs.

$$
\nabla f(x, y)=\left\langle 1 \cdot \ln y, x \cdot \frac{1}{y}\right\rangle
$$

$$
\vec{v}=\nabla f(1,2)=\left\langle 0,2 \cdot \frac{1}{1}\right\rangle=\langle 0,2\rangle
$$

3. [5 points] Sketch the level curve of $f(x, y)=3 x^{2}+3 y^{2}$ which passes through the point $P(1,1)$, and draw the gradient vector at P.

4. [8 points] Consider the function $f(x, y)=x^{3}+y^{3}-3 x-12 y-2$.
a) Find all the critical points.

$$
\begin{aligned}
& f_{x}=3 x^{2}-3=0 \Leftrightarrow x^{2}=1 \\
& f_{y}=3 y^{2}-12=0 \Leftrightarrow y^{2}=4 \\
& (1,2) \\
& (1,-2) \\
& (-1,2) \\
& (-1,-2)
\end{aligned}
$$

b) For each critical point, use the second derivative test to determine if it is a local minimum, local maximum, or saddle point.

$$
\begin{aligned}
D & =f_{x x} f_{y y}-f_{x y}{ }^{2}=6 x \cdot 6 y-0^{2} \\
& =36 x y
\end{aligned}
$$

point	D	$f_{x x}$	type
$(1,2)$	+	+	local min
$(1,-2)$	-	+	saddle
$(-1,2)$	-	-	saddle
$(-1,-2)$	+	-	local. max

Math 253: Quiz 6 (Hint. Write down the equation for a level curve. Suppose the level curve is parameterized. Take derivatives of both sides of the equation.)

$$
f(x, y)=c
$$

level curve is $\stackrel{r}{r}(t)$
parametenend: $\quad f(x(t), y(t))=c \quad \stackrel{\vec{r}(t)}{=\langle x(t) y(t)\rangle}$

$$
\begin{gathered}
\frac{d}{d c}: \quad \frac{\partial f}{\partial x}(x(t), y(t)) \cdot x^{\prime}(t)+\frac{\partial f}{\partial y}(x(t), y(t)) y^{\prime}(t)=0 \\
\nabla f(x(t), y(t)) \cdot \vec{r}^{\prime}(t)=0
\end{gathered}
$$

so gradient is orthogmal to tangent of curve

