\qquad
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible. and simplify

1. [5 points] Find the tangent plane to the surface $f(x, y)=9 x^{2}-y^{3}$ at the point $P(1,2,1)$.

$$
\begin{aligned}
f_{x} & =18 x, \quad f_{y}=-3 y^{2} \\
z & =f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
& =1+18 \cdot 1(x-1)+\left(-3 \cdot 2^{2}\right)(y-2) \\
z & =1+18(x-1)-12(y-2)
\end{aligned}
$$

or:

$$
18 x-12 y-z+7=0
$$

2. [5 points] Let $w(t, v)=\sin (t v)$ where $t=r+s$ and $v=r s$. Find $\frac{\partial w}{\partial s}$.

$$
\begin{aligned}
\boxed{\frac{\partial w}{\partial s}} & =\frac{\partial w}{\partial t} \frac{\partial t}{\partial s}+\frac{\partial w}{\partial v} \frac{\partial v}{\partial s} \\
& =\cos (t v) \cdot v \cdot 1+\cos (t v) \cdot t \cdot r \\
& =\frac{(v+t r) \cos (t v)}{\text { \& either }} \mathbf{\text { is }} \text { in e } \\
& =(r s+(r+s) r) \cos ((r+s) r s)
\end{aligned}
$$

3. [8 points] The volume of a right circular cone is $V=\frac{1}{3} \pi r^{2} h$.
a) Find the differential $d V$.

b) A machine makes cones for ice cream, with target values $r=3 \mathrm{~cm}$ and $h=10 \mathrm{~cm}$, thus a target volume of $V=30 \pi \mathrm{~cm}^{3}$. However, the machine is only accurate to within 1 cm in r and h. Use the differential to estimate the maximum deviation in volume away from the target volume.

4. [4 points] Let $u=u(x, y, z)$ where $x=x(t), y=y(t), z=z(t)$. For $\frac{d u}{d t}$, show a tree diagram and state the chain rule.

5. [3 points] What is a normal vector to the plane $36 x+6 y+z-39=0$?

Extra Credit. [1 point] The first-order Taylor polynomial of $f(x)$ at the basepoint $x=a$ is

$$
p_{1}(x)=f(a)+f^{\prime}(a)(x-a) .
$$

What is the first-order Taylor polynomial of $f(x, y)$ at the basepoint $(x, y)=(a, b)$? Use correct notation.

$$
\begin{aligned}
p_{1}(x, y)=f(a, b) & +f_{x}(a, b)(x-a) \\
& +f_{y}(a, b)(y-b)
\end{aligned}
$$

[I pointed ont in class that the linearization,
or tangent plane, is the Taylor polynomial

EXTRA SPACE FOR ANSWERS

