Name:
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [5 points] Find and simplify the tangent plane to the surface $f(x, y)=9 x^{2}-y^{3}$ at the point $P(1,2,1)$.
2. [5 points] Let $w(t, v)=\sin (t v)$ where $t=r+s$ and $v=r s$. Find $\frac{\partial w}{\partial s}$.

Math 253: Quiz 5
3. [8 points] The volume of a right circular cone is $V=\frac{1}{3} \pi r^{2} h$.
a) Find the differential $d V$.
b) A machine makes cones for ice cream, with target values $r=3 \mathrm{~cm}$ and $h=10 \mathrm{~cm}$, thus a target volume of $V=30 \pi \mathrm{~cm}^{3}$. However, the machine is only accurate to within 1 cm in r and h. Use the differential to estimate the maximum deviation in volume away from the target volume.
4. [4 points] Let $u=u(x, y, z)$ where $x=x(t), y=y(t), z=z(t)$. For $\frac{d u}{d t}$, show a tree diagram and state the chain rule.
5. [3 points] What is a normal vector to the plane $36 x+6 y+z-39=0$?

Extra Credit. [1 point] The first-order Taylor polynomial of $f(x)$ at the basepoint $x=a$ is

$$
p_{1}(x)=f(a)+f^{\prime}(a)(x-a) .
$$

What is the first-order Taylor polynomial of $f(x, y)$ at the basepoint $(x, y)=(a, b)$? Use correct notation.

$$
p_{1}(x, y)=
$$

