\qquad
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [4 points] Find the arc length of the vector-valued function $\mathbf{r}(t)=-t \mathbf{i}+4 t \mathbf{j}+3 t \mathbf{k}$ over $[0,1]$. (Hint. You can do this either way, with or without an integral.)
without: Curve is a straight line integral

$$
\begin{aligned}
& \vec{r}(0)=\langle 0,0,0\rangle, \quad \stackrel{\rightharpoonup}{r}(1)=\langle-1,4,3\rangle \\
& s=\left(\begin{array}{c}
d \text { distance } \\
\text { between } \\
\text { points }
\end{array}\right)=\sqrt{1^{2}+4^{2}+3^{2}}=\sqrt{26}
\end{aligned}
$$

with

$$
\begin{aligned}
S & =\int_{0}^{1}\left\|\vec{r}^{\prime}(t)\right\| d t=\int_{0}^{1}\|\langle-1,4,3\rangle\| d t \\
& =\int_{0}^{1} \sqrt{1^{2}+4^{2}+3^{2}} d t=\sqrt{26} \int_{0}^{1} d t=\sqrt{26}
\end{aligned}
$$

2. [4 points] Compute the arc-length function $s(t)$ for the helix $\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle$ from $t=0$.

$$
\begin{aligned}
s(t) & =\int_{0}^{t}\left\|\vec{r}^{\prime}(u)\right\| d u=\int_{0}^{t}\|\langle-\sin u, \cos u, 1\rangle\| d u \\
& =\int_{0}^{t} \sqrt{\sin ^{2} u+\cos ^{2} u+1} d u=\int_{0}^{t} \sqrt{2} d u \\
& =\sqrt{2} \int_{0}^{t} d u=\sqrt{2}[u]_{0}^{t}=\sqrt{2} t
\end{aligned}
$$

3. [5 points] Explain in 2 or 3 complete sentences what the following definition of curvature, given in section 3.3, is saying:

$$
\kappa(s)=\left\|\frac{d \mathbf{T}}{d s}\right\|
$$

(Hint. What are the objects on the right side? Use the phrase "rate of change" where appropriate. And what is the curvature geometrically?)
If $\vec{r}(s)$ is a curve parameterical by
arclength, with unit tangent $\vec{T}(s)$,
then the curvature $X(s)$ is the magnitude
of the rate of change of $\vec{T}(s)$. The
number $K(s)$ is $\frac{1}{R}$ where R is
the radius
at $\vec{r}(s)$.
4. [4 points] Find the level surface of the three-variable function $w(x, y, z)=x^{2}+y^{2}+z^{2}$ at $c=36$. Describe this surface in a complete sentence.
level surface:

This
surface
is the
sphere
of radius 6 centered at the origin.
5. [4 points] Find and sketch the domain of the function $f(x, y)=\sqrt{4-x^{2}-y^{2}}$.

$$
\text { (domain) }=\left\{(x, y) \mid 4-x^{2}-y^{2} \geqslant 0\right\}
$$

$$
=\left\{(x, y) \mid x^{2}+y^{2} \leq 4\right\}
$$

6. [4 points] Visualize the same function $f(x, y)=\sqrt{4-x^{2}-y^{2}}$ by finding and sketching at least three level curves. Label the curves with their function value, that is, their " c " value.

Extra Credit. [1 point] Given the definition $\kappa(s)=\left\|\frac{d \mathbf{T}}{d s}\right\|$, show that $\kappa(t)=\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|}$ for a vectorvalued function $\mathbf{r}(t)$.

$$
X(t)=\left\|\frac{d \vec{T}}{d s}\right\|=\left\|\frac{d \vec{T} / d t}{d s / d t}\right\| \stackrel{*}{=} \frac{\left\|\vec{T}^{\prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|}
$$

regarding the denominator in *:

$$
s(t)=\int_{a}^{t} \| \vec{r}^{\prime}\left(\omega \| d u \quad \text { so } \quad \frac{d s}{d t}=\left\|\vec{r}^{\prime}(t)\right\|\right.
$$

by FTC.

EXTRA SPACE FOR ANSWERS

