Name:

30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [4 points] Find the arc length of the vector-valued function $\mathbf{r}(t)=-t \mathbf{i}+4 t \mathbf{j}+3 t \mathbf{k}$ over $[0,1]$. (Hint. You can do this either way, with or without an integral.)
2. [4 points] Compute the arc-length function $s(t)$ for the helix $\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle$ from $t=0$.
3. [5 points] Explain in 2 or 3 complete sentences what the following definition of curvature, given in section 3.3, is saying:

$$
\kappa(s)=\left\|\frac{d \mathbf{T}}{d s}\right\| .
$$

(Hint. What are the objects on the right side? Use the phrase "rate of change" where appropriate. And what is the curvature geometrically?)
4. [4 points] Find the level surface of the three-variable function $w(x, y, z)=x^{2}+y^{2}+z^{2}$ at $c=36$. Describe this surface in a complete sentence.
5. [4 points] Find and sketch the domain of the function $f(x, y)=\sqrt{4-x^{2}-y^{2}}$.
6. [4 points] Visualize the same function $f(x, y)=\sqrt{4-x^{2}-y^{2}}$ by finding and sketching at least three level curves. Label the curves with their function value, that is, their " c " value.

Math 253: Quiz 4 16 February, 2023
Extra Credit. [1 point] Given the definition $\kappa(s)=\left\|\frac{d \mathbf{T}}{d s}\right\|$, show that $\kappa(t)=\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|}$ for a vectorvalued function $\mathbf{r}(t)$.

