Name:

30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [5 points] Suppose $\mathbf{r}(t)=\langle t, \cos t, \sin t\rangle$.
a) Sketch this three-dimensional (space) curve.
b) Is $\mathbf{r}(t)$ continuous at $t=\pi$? If so, explain why in a few words, and state as an equation.
2. [4 points] Consider the vector-valued function $\mathbf{r}(t)=t^{2} \mathbf{i}+\sqrt{t-3} \mathbf{j}+\frac{5}{2 t-1} \mathbf{k}$.
a) What is the domain of $\mathbf{r}(t)$?
b) Compute $\lim _{t \rightarrow 3^{+}} \mathbf{r}(t)$.

Math 253: Quiz 3

3. [8 points] Suppose that a moving particle has position function $\mathbf{r}(t)=\left\langle e^{-t}, t, t e^{-t}\right\rangle$.
a) What is the velocity $\mathbf{v}(t)$ at time $t=1$?
b) Calculate the tangent line to the curve $\mathbf{r}(t)$ at $t=1$.
c) Compute $\int_{0}^{1} \mathbf{r}(t) d t=$

Math 253: Quiz 3

4. [8 points] The vector-valued function $\mathbf{r}(t)=a \sin (\omega t) \mathbf{i}+a \cos (\omega t) \mathbf{j}$, for constants $a>0$ and $\omega>0$, describes uniform circular motion.
a) Show that the velocity $\mathbf{v}(t)$ at any time is orthogonal to the position $\mathbf{r}(t)$.
b) Show that the acceleration $\mathbf{a}(t)$ at any time is orthogonal to the velocity $\mathbf{v}(t)$.

Math 253: Quiz 3
9 February, 2023
Extra Credit. [1 point] Show that

$$
\frac{d}{d t}\left(\frac{1}{2}\|\mathbf{r}(t)\|^{2}\right)=\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)
$$

