Name:
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [4 points] Compute $\mathbf{u} \times \mathbf{v}$ if $\mathbf{u}=2 \mathbf{i}+3 \mathbf{j}$ and $\mathbf{v}=\mathbf{j}+2 \mathbf{k}$.

$$
\begin{aligned}
& \vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{1} \\
2 & 3 & 0 \\
0 & 1 & 2
\end{array}\right|=\begin{array}{r}
(3 \cdot 2-0) \hat{\imath}-(2 \cdot 2-0) \hat{\jmath} \\
\\
\\
+(2 \cdot 1-0) \hat{k}
\end{array} \\
&=\frac{(6 \hat{\imath}-4 \hat{\jmath}+2 \hat{k})}{}=(-6,-4,2\rangle \\
& \text { either form is just fine! }
\end{aligned}
$$

2. [4 points] Suppose $P(0,0,0)$ is a point in the plane with normal vector $\mathbf{n}=\langle-3,2,-1\rangle$. Find the general equation of the plane. Express your answer in the form $a x+b y+c z+d=0$.

$$
\begin{aligned}
& \text { if } Q(x, y, z) \text { is in the plane then } \\
& \vec{n} \cdot \overrightarrow{P Q}=0 \\
\Leftrightarrow & \langle-3,2,-1\rangle \cdot\langle x-0, y-0, z-0\rangle=0 \\
\Leftrightarrow & -3 x+2 y-z=0
\end{aligned}
$$

3. [4 points] Find a general equation of the plane through the three points $P(3,-1,2), Q(1,0,1)$, and $R(0,-1,1)$. Express your answer in the form $a x+b y+c z+d=0$.

$$
\vec{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
-2 & 1 & -1 \\
-3 & 0 & -1
\end{array}\right|=\begin{aligned}
& (-1-0) \hat{\imath}-(2-3) \hat{\jmath} \\
& \\
& +(0+3) \hat{k} \\
&
\end{aligned}
$$

$S(x, y, z)$ is point in plane

$$
\begin{aligned}
& \vec{n} \cdot \overrightarrow{p s}=0 \\
\Leftrightarrow & \langle-1,1,3\rangle \cdot<x-3, y+1, z-2\rangle=0 \\
\Leftrightarrow & -(x-3)+y+1+3(z-2)=0 \\
\Leftrightarrow & -x+y+3 z-2=0
\end{aligned}
$$

4. [5 points] Consider the line passing through the two points $P(4,0,5)$ and $Q(2,3,1)$.

$$
\begin{aligned}
& \text { a) Find a vector equation of the line. } \\
& \vec{r}(t)=\vec{p}+t \overrightarrow{P Q}=\frac{\langle 4,0,5\rangle+t\langle-2,3,-4\rangle}{} \\
&=\frac{\langle 4-2 t, 0+3 t, 5-4 t\rangle}{a \mid \text { so fine }}
\end{aligned}
$$

b) Find parametric equations of the line.

$$
\begin{aligned}
& x(t)=4-2 t \\
& y(t)=3 t \\
& z(t)=5-4 t
\end{aligned}
$$

Math 253: Quiz 2
5. [4 points] Consider points $A(3,-1,2), B(1,0,1)$, and $C(0,-1,1)$. Find the area of the triangle

$$
\begin{aligned}
& A_{\Delta}=\frac{1}{2}\|\overrightarrow{A B} \times \overrightarrow{A C}\| \\
& \overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
-2 & 1 & -1 \\
-3 & 0 & -1
\end{array}\right|=\begin{array}{c}
(-1-0) \hat{\imath}-(2-3) \hat{\jmath} \\
\\
+(0+3) \hat{k} \\
=
\end{array}
\end{aligned}
$$

So:

$$
A_{\Delta}=\frac{1}{2} \sqrt{1^{2}+1^{2}+3^{2}}=\frac{1}{2} \sqrt{11}=\sqrt{21}
$$

6. [4 points] Find the distance from the point $P(1,5,-4)$ to the plane $3 x-y+2 z=6$.
$\vec{n}=\langle 3,-1,2\rangle$ for the plane
$Q=(2,0,0)$ is in the plane

$$
\begin{aligned}
d & =\left|\operatorname{com} p_{\vec{n}} \overrightarrow{Q P}\right|=\left|\frac{\overrightarrow{Q P} \cdot \vec{n}}{\|\vec{n}\|}\right| \\
& =\left|\frac{\langle-1,5,-4\rangle \cdot\langle 3,-1,2\rangle}{\sqrt{3^{2}+1^{2}+2^{2}}}\right|=\left|\frac{-3-5-8}{\sqrt{14}}\right| \\
& =\frac{16}{\sqrt{14}}=\frac{8 \sqrt{2}}{\sqrt{7}}
\end{aligned}
$$

Extra Credit. [1 point] Show that $\mathbf{u} \times \mathbf{v}$ is orthogonal to $\mathbf{u}+\mathbf{v}$ and also to $\mathbf{u}-\mathbf{v}$. remember that $\vec{u} \times \vec{v}$ is orthogonal to \vec{u} and \vec{v}, So:

$$
\begin{aligned}
& (\vec{u} \times \vec{v}) \cdot(\vec{u}+\vec{v})=(\vec{u} \times \vec{v}) \cdot \vec{u}+(\vec{u} \times \overrightarrow{0}) \cdot \vec{v}=0 \\
& (\vec{u} \times \vec{v}) \cdot(\vec{u}-\vec{v})=(\vec{u} \times \vec{v}) \cdot \vec{u}-(\vec{u} \times \vec{v}) \cdot \vec{v}=0
\end{aligned}
$$

EXTRA SPACE FOR ANSWERS

