Name:
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [4 points] Compute $\mathbf{u} \times \mathbf{v}$ if $\mathbf{u}=2 \mathbf{i}+3 \mathbf{j}$ and $\mathbf{v}=\mathbf{j}+2 \mathbf{k}$.
2. [4 points] Suppose $P(0,0,0)$ is a point in the plane with normal vector $\mathbf{n}=\langle-3,2,-1\rangle$. Find the general equation of the plane. Express your answer in the form $a x+b y+c z+d=0$.
3. [4 points] Find a general equation of the plane through the three points $P(3,-1,2), Q(1,0,1)$, and $R(0,-1,1)$. Express your answer in the form $a x+b y+c z+d=0$.
4. [5 points] Consider the line passing through the two points $P(4,0,5)$ and $Q(2,3,1)$.
a) Find a vector equation of the line.
b) Find parametric equations of the line.
5. [4 points] Consider points $A(3,-1,2), B(1,0,1)$, and $C(0,-1,1)$. Find the area of the triangle $A B C$.
6. [4 points] Find the distance from the point $P(1,5,-4)$ to the plane $3 x-y+2 z=6$.

Extra Credit. [1 point] Show that $\mathbf{u} \times \mathbf{v}$ is orthogonal to $\mathbf{u}+\mathbf{v}$ and also to $\mathbf{u}-\mathbf{v}$.

