Math 253: Quiz 1
\square
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [8 points] Suppose we have three vectors, $\mathbf{a}=\mathbf{i}-\mathbf{j}+\mathbf{k}, \mathbf{b}=\mathbf{j}+3 \mathbf{k}, \mathbf{c}=-\mathbf{i}+2 \mathbf{j}-4 \mathbf{k}$. Compute the following quantities which are either scalars or vectors. You can write the vectors using either component notation or standard unit vector notation.
a) $\|$ a $\|=\sqrt{1^{2}+1^{2}+1^{2}}$

b) $(\mathrm{a}, \mathrm{b}) \mathrm{C}=(0-1+3) \vec{c}=2 \vec{c}$

$$
\begin{aligned}
& \text { c) a unit vector in the direction of } \mathbf{b} \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{10}} \hat{\jmath}+\frac{3}{\sqrt{10}} \hat{k} \\
& \text { d) the vector projection of } \mathbf{b} \text { onto } \mathbf{a} \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
=\frac{2\langle 1,-1,1\rangle}{3} & \left.=\frac{2 \pi}{3}-\frac{2}{3}, \frac{2}{3}\right\rangle \\
& =\frac{2}{3} \hat{\imath}-\frac{2}{3} \hat{\jmath}+\frac{2}{3} \hat{k}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Math 253: Quiz } 1 \\
& \begin{array}{l}
\text { 2. [6 points] Find the equation of the sphere which has diameter } P Q \text {, where } P=(2,-1,-3) \text { and } \\
Q=(-2,5,-1) \text {. }
\end{array} \\
& 2 r=\|\overrightarrow{P Q}\|=\|\langle-4,6,2\rangle\| \\
& \frac{\text { Q. }}{\frac{1}{E}} \quad=\sqrt{4^{2}+6^{2}+2^{2}}=\sqrt{56}=2 \sqrt{14} \Rightarrow r=\sqrt{4} \\
& C=\frac{1}{2}(P+Q)=\left(\frac{2+-2}{2}, \frac{-1+5}{2}, \frac{-3+-1}{2}\right)=(0,2,-2) \\
& (x-0)^{2}+(y-2)^{2}+(z+2)^{2}=14
\end{aligned}
$$

3. [6 points] Describe the set of points in three dimensional space that satisfies $x^{2}+(z-2)^{2}=1$, and
sketch a graph of the surface. (Please make your graph at least two inches put at least one scale value, a labeled tick mark, along each axis.)

$$
x^{2}+(z-2)^{2}=1
$$

is circle in x, z plane, so it is a cylinder along a line parallel to the y-axis

4. [5 points] A methane molecule (figure) has a carbon atom situated at the origin and four hydrogen atoms located at points $P(1,1,-1), Q(1,-1,1), R(-1,1,1)$, and $S(-1,-1,-1)$. Find the angle θ between vectors $\overrightarrow{O S}$ and $\overrightarrow{O R}$.

Hint. It is just fine if your answer has an $\arccos ()$ in it, but otherwise it should be simplified. I know you do not have a calculator!

Math 253: Quiz 1

$$
\begin{aligned}
& \|\vec{v}-\vec{u}\|^{2}=(\vec{v}-\vec{u}) \cdot(\vec{v}-\vec{u}) \\
& \quad=\vec{v} \cdot \vec{v}-\vec{v} \cdot \vec{u}-\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{u} \\
& =\|\vec{v}\|^{2}-\vec{u} \cdot \vec{v}-\vec{u} \cdot \vec{v}+\|\vec{u}\|^{2} \\
& \quad=\|\vec{v}\|^{2}-2 \vec{u} \cdot \vec{v}+\|\vec{u}\|^{2}
\end{aligned}
$$

