\qquad notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [4 points] Is $\mathbf{F}=2 x \cos y \mathbf{i}-x^{2} \sin y \mathbf{j}$ conservative? If it is, find a potential function.

$$
\begin{gathered}
P=2 x \cos y \rightarrow P_{y}=-2 x \sin y \\
Q=-x^{2} \sin y \rightarrow Q_{x}=-2 x \sin y \\
f_{x}=P=2 x \cos y \\
f(x, y)=x^{2} \cos y+g(y) \quad \text { Potential: } \\
-x^{2} \sin y=f_{y}=f_{y}=-x^{2} \sin y+g^{\prime}(y)=x^{2} \cos y \\
0=g^{\prime}(y) \\
g(y)=c
\end{gathered}
$$

$$
\nabla \times \vec{F} \neq \overrightarrow{0}
$$

\therefore no
method 2:

$$
\begin{array}{lll}
P=\sin y & P_{y}=\cos y & P_{z}=0 \\
Q=-x \cos y & Q_{x}=-\cos y / Q_{z}=0 \\
R=x & R_{x}=1 & R_{y}=0
\end{array}
$$

$$
\therefore
$$

3. [4 points] Is the following statement true or false? Explain in one or two sentences, justifying with any theorem that might apply.

If a vector field $\mathbf{F}(x, y, z)$ is conservative on the open and connected region D, then line integrals of \mathbf{F} are path independent on D, regardless of the shape of D.
If c_{1}, c_{2} are paths with the same endpoints, and if $\vec{F}=\nabla f$, then
by fund
4. [4 points] Suppose $f(x, y, z)=x y z^{2}-y z$ and C is a straight line from $(0,1,2)$ to $(1,1,1)$. Evaluate the integral using the Fundamental Theorem for Line Integrals:

$$
\begin{aligned}
& \int_{c} \mathrm{Cf} \text {. } \mathrm{cr}=f(1,1,1)-f(0,1,2) \\
& =(1-1)-(0-2) \\
& \text { = 2 }
\end{aligned}
$$

5. [4 points] Suppose C is the boundary of the region lying between the graphs of $y=0$ and $y=1-x^{2}$, and assume that C is oriented in the counterclockwise direction. Compute using Green's theorem:

$$
\oint_{C} \overbrace{}^{2} d x+\overparen{3 y x} d y=
$$

$=\iint$
$Q_{x}-P_{y} d A$

$$
=\int_{x=-1}^{1} \int_{y=0}^{1-x^{2}} 3 y-0 d y d x=\int_{-1}^{1}\left[\frac{3}{2} y^{2}\right]_{y=0}^{y=1-x^{2}} d x \longrightarrow|>|>|>|
$$

$$
\begin{aligned}
& =\frac{3}{2} \int_{-1}^{1}\left(1-x^{2}\right)^{2} d x=\frac{3}{2} \int_{-1}^{1} 1-2 x^{2}+x^{4} d x \\
& =\frac{3}{2}\left[x-\frac{2}{3} x^{3}+\frac{x^{5}}{5}\right]_{-1}^{1}=\frac{3}{2}\left[2-\frac{2}{3} \cdot 2+\frac{2}{5}\right]=\frac{8}{5}
\end{aligned}
$$

6. [5 points] Suppose D is any simply-connected region in the plane, and let C be its boundary, oriented in the counterclockwise direction. Compute using Green's theorem and simplify as far as possible:

Thursday 20 April, 2023
Extra Credit. [1 point] Suppose C is the parameterized curve $\mathbf{r}(t)=\left\langle\cos \left(1-t^{2}\right), \sin \left(1-t^{2}\right)\right\rangle$ for $-1 \leq t \leq 1$, whose graph is the upper half of the unit circle. Suppose $\mathbf{F}=\left\langle x e^{y}, \sin (x+y)\right\rangle$. Compute the line integral, explaining your steps:

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

(Hint. Do not apply brute force. Think about the curve.)

EXTRA SPACE FOR ANSWERS

