Name:

30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [4 points] Is $\mathbf{F}=2 x \cos y \mathbf{i}-x^{2} \sin y \mathbf{j}$ conservative? If it is, find a potential function.
2. [4 points] Is $\mathbf{F}=\langle\sin y,-x \cos y, x\rangle$ conservative? If it is, find a potential function.
3. [4 points] Is the following statement true or false? Explain in one or two sentences, justifying with any theorem that might apply.

If a vector field $\mathbf{F}(x, y, z)$ is conservative on the open and connected region D, then line integrals of \mathbf{F} are path independent on D, regardless of the shape of D.
4. [4 points] Suppose $f(x, y, z)=x y z^{2}-y z$ and C is a straight line from $(0,1,2)$ to $(1,1,1)$. Evaluate the integral using the Fundamental Theorem for Line Integrals:

$$
\int_{C} \nabla f \cdot d \mathbf{r}=
$$

5. [4 points] Suppose C is the boundary of the region lying between the graphs of $y=0$ and $y=1-x^{2}$, and assume that C is oriented in the counterclockwise direction. Compute using Green's theorem:

$$
\oint_{C} x^{2} d x+3 y x d y=
$$

6. [5 points] Suppose D is any simply-connected region in the plane, and let C be its boundary, oriented in the counterclockwise direction. Compute using Green's theorem and simplify as far as possible:

$$
\oint_{C}-y d x+x d y=
$$

Extra Credit. [1 point] Suppose C is the parameterized curve $\mathbf{r}(t)=\left\langle\cos \left(1-t^{2}\right), \sin \left(1-t^{2}\right)\right\rangle$ for $-1 \leq t \leq 1$, whose graph is the upper half of the unit circle. Suppose $\mathbf{F}=\left\langle x e^{y}, \sin (x+y)\right\rangle$. Compute the line integral, explaining your steps:

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

(Hint. Do not apply brute force. Think about the curve.)

