Name:

30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [8 points] Suppose we have three vectors, $\mathbf{a}=\mathbf{i}-\mathbf{j}+\mathbf{k}, \mathbf{b}=\mathbf{j}+3 \mathbf{k}, \mathbf{c}=-\mathbf{i}+2 \mathbf{j}-4 \mathbf{k}$. Compute the following quantities which are either scalars or vectors. You can write the vectors using either component notation or standard unit vector notation.
a) $\|\mathbf{a}\|=$
b) $(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}=$
c) a unit vector in the direction of \mathbf{b} :
$\mathbf{u}=$
d) the vector projection of \mathbf{b} onto \mathbf{a} :

$$
\mathbf{w}=\operatorname{proj}_{\mathbf{a}} \mathbf{b}=
$$

2. [6 points] Find the equation of the sphere which has diameter $P Q$, where $P=(2,-1,-3)$ and $Q=(-2,5,-1)$.
3. [6 points] Describe the set of points in three dimensional space that satisfies $x^{2}+(z-2)^{2}=1$, and sketch a graph of the surface. (Please make your graph at least two inches tall, label the axes, and put at least one scale value, a labeled tick mark, along each axis.)
4. [5 points] A methane molecule (figure) has a carbon atom situated at the origin and four hydrogen atoms located at points $P(1,1,-1), Q(1,-1,1), R(-1,1,1)$, and $S(-1,-1,-1)$. Find the angle θ between vectors $\overrightarrow{O S}$ and $\overrightarrow{O R}$.

Hint. It is just fine if your answer has an $\arccos ()$ in it, but otherwise it should be simplified. I know you do not have a calculator!

Extra Credit. [1 point] Show that $\|\mathbf{v}-\mathbf{u}\|^{2}=\|\mathbf{v}\|^{2}-2 \mathbf{u} \cdot \mathbf{v}+\|\mathbf{u}\|^{2}$.

