Instructions. You have 120 minutes. Closed book, closed notes, no calculator. Show all your work in order to receive full credit.

1. Consider the following points in space: $A(-2,0,1), B(1,1,-1)$, and $C(0,2,0)$.
(a) Find parametric equations for the line going through A and B.

Solution:

$$
\overrightarrow{A B}=\langle 1+2,1-0,-1-1\rangle=\langle 3,1,-2\rangle
$$

So parametric equations for the line are:

$$
\left\{\begin{array}{l}
x=-2+3 t \\
y=r \\
z=1-2 t
\end{array}\right.
$$

(b) Find the area of the parallelogram with adjacent sides $A B$ and $A C$.

Solution: Let A be the area of the parallelogram.

$$
\begin{aligned}
\overrightarrow{A C} & =\langle 0+2,2-0,0-1\rangle=\langle 2,2,-1\rangle \\
\overrightarrow{A B} \times \overrightarrow{A C} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & 1 & -2 \\
2 & 2 & -1
\end{array}\right|=\langle-1+4,-4+3,6-2\rangle=\langle 3,-1,4\rangle \\
\Rightarrow \quad A & =\|\overrightarrow{A B} \times \overrightarrow{A C}\|=\sqrt{3^{2}+(-1)^{2}+4^{2}}=\sqrt{26}
\end{aligned}
$$

2. Assume a particle has velocity $\mathbf{v}(t)=\left\langle 2 t, t^{2}, 2\right\rangle$ with speed measured in ft / s.
(a) Find the position vector $\mathbf{r}(t)$ at all times if $\mathbf{r}(2)=\langle 2,3,1\rangle$.

Solution:

$$
\begin{aligned}
\mathbf{r}(t)-\mathbf{r}(2) & =\int_{2}^{t} \mathbf{v}(u) d u=\int_{2}^{t}\left\langle 2 u, u^{2}, 2\right\rangle d u=\left[\left\langle u^{2}, \frac{u^{3}}{3}, 2 u\right\rangle\right]_{2}^{t} \\
\Rightarrow \quad \mathbf{r}(t)-\langle 2,3,1\rangle & =\left\langle t^{2}, \frac{t^{3}}{3}, 2 t\right\rangle-\left\langle 4, \frac{8}{3}, 4\right\rangle \\
\Rightarrow \mathbf{r}(t) & =\left\langle t^{2}, \frac{t^{3}}{3}, 2 t\right\rangle+\left\langle 2-4,3-\frac{8}{3}, 1-4\right\rangle \\
& =\left\langle t^{2}, \frac{t^{3}}{3}, 2 t\right\rangle+\left\langle-2, \frac{1}{3},-3\right\rangle \\
& \Rightarrow \mathbf{r}(t)=\left\langle t^{2}-2, \frac{t^{3}+1}{3}, 2 t-3\right\rangle
\end{aligned}
$$

(b) Find the distance traveled from $t=1 \mathrm{~s}$ to $t=3 \mathrm{~s}$.

Solution: Let d be the distance traveled.

$$
\begin{aligned}
\mathbf{v}(t) & =\left\langle 2 t, t^{2}, 2\right\rangle \quad \Rightarrow \quad\|\mathbf{v}(t)\|=\sqrt{4 t^{2}+t^{4}+4}=\sqrt{\left(t^{2}+2\right)^{2}}=t^{2}+2 \\
\Rightarrow \quad d & =\int_{1}^{3}\|\mathbf{v}(t)\| d t=\int_{1}^{3} t^{2}+2 d t=\left[\frac{t^{3}}{3}+2 t\right]_{1}^{3}=9+6-\frac{1}{3}-2=\frac{38}{3} \mathrm{ft}
\end{aligned}
$$

3. Let $f(x, y)=x^{2} y^{2}-x y^{2}-x^{2}-2 y^{2}+x$.
(a) Verify that $(1 / 2,0)$ and $(-1,1)$ are (among the) critical points of $f(x, y)$. Then classify them using the Second Partials Test.
Solution: We have:

$$
\begin{aligned}
\nabla f(x, y) & =\left\langle 2 x y^{2}-y^{2}-2 x+1,2 x^{2} y-2 x y-4 y\right\rangle \\
\Rightarrow \quad \nabla f(1 / 2,0) & =\langle 0-0-1+1,0-0-0\rangle=\langle 0,0\rangle \\
\Rightarrow \quad \nabla f(-1,1) & =\langle 2(-1)(1)-1+2+1,2(1)(1)-2(-1)(1)-4(1)\rangle=\langle 0,0\rangle
\end{aligned}
$$

So they are indeed critical points and:

$$
\begin{aligned}
f_{x x} & =2 y^{2}-2 \quad, \quad f_{y y}=2 x^{2}-2 x-4 \quad, \quad f_{x y}=4 x y-2 y \\
\Rightarrow \quad d(x, y) & =f_{x x} f_{y y}-f_{x y}^{2}=4\left(y^{2}-1\right)\left(x^{2}-x-2\right)-4(2 x y-y)^{2}
\end{aligned}
$$

- $d(1 / 2,0)=4(-1)\left(\frac{1}{4}-\frac{1}{2}-2\right)-4(0)=9>0, f_{x x}(1 / 2,0)=-2<0$ so $(1 / 2,0)$ is a local maximum;
- $d(-1,1)=4(0)(1+1-2)-4(-2-1)^{2}=-36<0$, so $(-1,1,-2)$ is a saddle point ;
(b) Find the directional derivative of f when moving from $(0,2)$ towards $(-1,3)$.

Solution:

$$
\begin{aligned}
\nabla f(x, y) & =\left\langle 2 x y^{2}-y^{2}-2 x+1,2 x^{2} y-2 x y-4 y\right\rangle \\
\Rightarrow \quad \nabla f(0,2) & =\langle 0-4-0+1,0-0-8\rangle=\langle-3,-8\rangle \\
\mathbf{v} & =\langle-1-0,3-2\rangle=\langle-1,1\rangle \quad \Rightarrow \quad \mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}=\left\langle-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle \\
D_{\mathbf{u}} f(0,2) & =\nabla f(0,2) \cdot \mathbf{u}=\langle-3,-8\rangle \cdot\left\langle-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle=\frac{3}{\sqrt{2}}-\frac{8}{\sqrt{2}}=-\frac{5 \sqrt{2}}{2}
\end{aligned}
$$

4. Switch the order of integration then compute

$$
I=\int_{0}^{4} \int_{y^{\frac{3}{2}}}^{8} \sqrt{y} e^{x^{2}} d x d y
$$

Solution: The region of integration is:

$$
x=y^{\frac{2}{3}} \text { or } y=x^{\frac{3}{2}}
$$

So switching the order of integration we have:

$$
I=\int_{0}^{8} \int_{0}^{x^{\frac{2}{3}}} \sqrt{y} e^{x^{2}} d y d x
$$

And we compute:

$$
I=\int_{0}^{8} \int_{0}^{x^{\frac{2}{3}}} \sqrt{y} e^{x^{2}} d y d x=\int_{0}^{8}\left[\frac{2 y^{\frac{3}{2}}}{3} e^{x^{2}}\right]_{0}^{x^{\frac{2}{3}}} d x=\int_{0}^{8} \frac{2 x}{3} e^{x^{2}}-0 d x=\left[\frac{e^{x^{2}}}{3}\right]_{0}^{8}=\frac{e^{64}-1}{3}
$$

5. Consider a particle moving along C parametrized by $\mathbf{r}(t)=\left\langle t^{2}-1,2 t, t\right\rangle, 1 \leq t \leq 2$ through the vector field $\mathbf{F}(x, y, z)=\left\langle 2 x y-1, x^{2}-z, 2 z-y\right\rangle$.
(a) The field is conservative. Find all potential functions.

Solution: We have that for any potential function $f, \mathbf{F}(x, y, z)=\langle P, Q, R\rangle=\left\langle f_{x}, f_{y}, f_{z}\right\rangle$. So,

$$
\begin{aligned}
& f(x, y, z)=\int P d x=\int 2 x y-1 d x=x^{2} y-x+C_{1}(y, z) \\
& f(x, y, z)=\int Q d y=\int x^{2}-z d y=x^{2} y-y z+C_{2}(x, z) \\
& f(x, y, z)=\int R d x=\int 2 z-y d z=z^{2}-y z+C_{3}(x, y) \\
& \Rightarrow \quad f(x, y, z)=x^{2} y-x-y z+z^{2}+C
\end{aligned}
$$

(b) Apply the Fundamental Theorem of Line Integrals to compute the circulation (work). Solution:

$$
\begin{aligned}
\mathbf{r}(1) & =\langle 0,2,1\rangle \quad, \quad \mathbf{r}(2)=\langle 3,4,2\rangle \\
W & =\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(3,4,2)-f(0,2,1) \\
& =9(4)-3-4(2)+4-(0-0-2(1)+1)=29-(-1)=30
\end{aligned}
$$

6. Sketch the following:
(a) the surfaces $4 x^{2}+9 y^{2}+z^{2}=9$ and $2 x-3 y+6 z=6$ and their intersection;

Solution: We have an ellipsoid and a plane, so their intersection is elliptic in shape.

(b) the surface given in spherical coordinates by $\phi=\frac{\pi}{4},-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$, and $0 \leq \rho \leq 2 \sec \phi$.

Solution: The surface $\phi=\frac{\pi}{4}$ is the cone $z=\sqrt{x^{2}+y^{2}}$, but only for $x \geq 0$ from the θ restriction, and for the restriction in ρ, we can rewrite $0 \leq \rho \leq 2 \sec \phi$ as $0 \leq \rho \cos \phi \leq 2$ that is $0 \leq z \leq 2$.

7. Consider the hyperboloid of two sheets:

$$
x^{2}+4 y^{2}-z^{2}=-4
$$

(a) Find an equation of the tangent plane to the hyperboloid at $(1,-1,3)$.

Solution: Let $F(x, y, z)=x^{2}+4 y^{2}-z^{2}=-4$. Then,

$$
\nabla F(x, y, z)=\langle 2 x, 8 y,-2 z\rangle \quad \Rightarrow \quad \nabla F(1,-1,3)=\langle 2,-8,-6\rangle
$$

And so the equation of the tangent plane is:

$$
2(x-1)-8(y+1)-6(z-3)=0 \quad \text { or } \quad x-4 y-3 z+4=0
$$

(b) Sketch the level curves corresponding to $z=2$ and $z=2 \sqrt{5}$.

Solution:

(c) Fully SET UP an expression with triple integrals to represent \bar{x} in the center of mass of the solid bounded by the hyperboloid and the plane $z=2 \sqrt{5}$ if the density of the solid is given by $\rho(x, y, z)=2 y^{2} z$. DO NOT EVALUATE.

Solution:

$$
\bar{x}=\frac{\int_{-4}^{4} \int_{-\frac{\sqrt{16-x^{2}}}{2}}^{\frac{\sqrt{16-x^{2}}}{2}}}{\int_{\sqrt{x^{2}+4 y^{2}+4}}^{2 \sqrt{5}} 2 x y^{2} z d z d y d x}
$$

8. Use Green's theorem to find the circulation of the vector field $\mathbf{F}(x, y)=\left\langle y e^{x}-\sin x, 2 x y\right\rangle$ over the closed curve C described below:

Solution: We verify that C is oriented counterclockwise. So by Green's theorem,

$$
\begin{aligned}
W & =\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{R}(2 x y)_{x}-\left(y e^{x}-\sin x\right)_{y} d A=\int_{0}^{1} \int_{x}^{1} 2 y-e^{x} d y d x \\
& =\int_{0}^{1}\left[y^{2}-y e^{x}\right]_{x}^{1} d x=\int_{0}^{1} 1-e^{x}-x^{2}+x e^{x} d x \\
& =\int_{0}^{1} 1-x^{2}+(x-1) e^{x} d x=\left|\begin{array}{cc}
u=x-1 & d u=d x \\
d v=e^{x} d x & v=e^{x}
\end{array}\right| \\
& =\left[x-\frac{x^{3}}{3}+(x-1) e^{x}\right]_{0}^{1}-\int_{0}^{1} e^{x} d x=1-\frac{1}{3}+0-(0-0-1)-\left[e^{x}\right]_{0}^{1} \\
& =\frac{5}{3}-e+1=\frac{8}{3}-e
\end{aligned}
$$

9. Let $f(x, y)=(x-1)^{2}+2 y^{2}$.
(a) Use the appropriate chain rule (not direct substitution) to find $\frac{\partial f}{\partial s}$ for $(s, t)=(2,-1)$ if $x=2 s t$, $y=t^{2}-s$.
Solution: For $(s, t)=(2,-1)$ then $(x, y)=\left(2(2)(-1),(-1)^{2}-2\right)=(-4,-1)$. Then,

$$
\begin{aligned}
\frac{\partial f}{\partial s} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}=2(x-1)(2 t)+4 y(-1) \\
& =2(-5)(-2)+4(-1)(-1)=20+4=24
\end{aligned}
$$

(b) Use the gradient and Lagrange multipliers to find the absolute minimum and maximum of the function $f(x, y)=(x-1)^{2}+2 y^{2}$ in the region $x^{2}+y^{2} \leq 4$.
Solution: Extreme values will happen either at critical points within the region or on the boundary.

- critical point(s): $\nabla f(x, y)=\langle 2(x-1), 4 y\rangle=\langle 0,0\rangle$ at $(1,0)$ which is indeed in the region (since $\left.1^{2}+0^{2} \leq 4\right)$.
- on the boundary $g(x, y)=x^{2}+y^{2}=4$:

$$
\nabla f=\lambda \nabla g, g(x, y)=4 \Rightarrow\langle 2(x-1), 4 y\rangle=\lambda\langle 2 x, 2 y\rangle, x^{2}+y^{2}=4 \Rightarrow\left\{\begin{array}{l}
2(x-1)=2 \lambda x \\
4 y=2 \lambda y \\
x^{2}+y^{2}=4
\end{array}\right.
$$

From the second equation, we have two cases:

- if $y=0$ then from the constraint: $x^{2}=4$ so $x= \pm 2$ and so we have the points $(\pm 2,0)$;
- if $y \neq 0$ then $\lambda=2$ and plugging into the first equation we have:

$$
2 x-2=4 x \quad \Rightarrow \quad x=-1
$$

which when plugged into the constraint gives you $y^{2}=3$ so $y= \pm \sqrt{3}$ and so we have the points $(-1, \pm \sqrt{3})$.
We now compute $f(x, y)$ at all the points found above to find the extreme values:

x	y	$f(x, y)$	
1	0	0	absolute minimum
2	0	1	
-2	0	9	
-1	$\pm \sqrt{3}$	10	absolute maximum

10. Consider the surface S parametrized by

$$
\mathbf{r}(u, v)=\left\langle u \cos v, u \sin v, 5-u^{2}\right\rangle \quad, \quad 0 \leq u \leq 2,0 \leq v \leq 2 \pi
$$

and a vector field $\mathbf{F}=\left\langle y, y^{2}-z, 3 z\right\rangle$.

(a) Fully set up in (u, v) the flux of the curl across the surface oriented upwards. DO NOT evaluate.

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{N} d S=\int_{0}^{2 \pi} \int_{0}^{2} 2 u^{2} \cos v-u d u d v
$$

Solution: First we compute:

$$
\mathbf{r}_{u} \times \mathbf{r}_{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\cos v & \sin v & -2 u \\
-u \sin v & u \cos v & 0
\end{array}\right|=\left\langle 2 u^{2} \cos v, 2 u^{2} \sin v, u\right\rangle
$$

and since the \mathbf{k} component is nonnegative, we have the right orientation for \mathbf{N}.
Next, we take the curl of the field:

$$
\operatorname{curl} \mathbf{F}(x, y, z)=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
y & y^{2}-z & 3 z
\end{array}\right|=\langle 0+1,0-0,0-1\rangle=\langle 1,0,-1\rangle
$$

and since it is constant we also have $\operatorname{curl} \mathbf{F}(\mathbf{r}(u, v))=\langle 1,0,-1\rangle$. And therefore,

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{N} d S=\int_{0}^{2 \pi} \int_{0}^{2}\langle 1,0,-1\rangle \cdot\left\langle 2 u^{2} \cos v, 2 u^{2} \sin v, u\right\rangle d u d v=\int_{0}^{2 \pi} \int_{0}^{2} 2 u^{2} \cos v-u d u d v
$$

(b) Stokes' theorem states that:

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{N} d S=\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

for C the boundary curve of the surface S oriented here counterclockwise. Give a parametrization in t of C then use it to compute the line integral equivalent to the flux of the curl.
Solution: The boundary curve happens at $u=2$ and so taking $v=t$, a parametrization of C is:

$$
\mathbf{r}(t)=\langle 2 \cos t, 2 \sin t, 1\rangle \quad, \quad 0 \leq t \leq 2 \pi
$$

where we verify that this goes counterclockwise. Then,

$$
d \mathbf{r}=\langle-2 \sin t, 2 \cos t, 0\rangle d t
$$

And so by Stokes' theorem,

$$
\begin{aligned}
\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{N} d S & =\int_{0}^{2 \pi} \mathbf{F}(\mathbf{r}(t)) \cdot d \mathbf{r} \\
& =\int_{0}^{2 \pi}\left\langle 2 \sin t,(2 \sin t)^{2}-1,3(1)\right\rangle \cdot\langle-2 \sin t, 2 \cos t, 0\rangle d t \\
& =\int_{0}^{2 \pi}-4 \sin ^{2} t+8 \sin ^{2} t \cos t-2 \cos t d t \\
& =\int_{0}^{2 \pi}-2(1-\cos 2 t)+8 \sin ^{2} t \cos t-2 \cos t d t \\
& =\left[-2\left(t-\frac{\sin 2 t}{2}\right)+\frac{8}{3} \sin ^{3} t-2 \sin t\right]_{0}^{2 \pi} \\
& =-2(2 \pi-0)+0-0-(0+0-0)=-4 \pi
\end{aligned}
$$

(c) Close the surface S by including the portion of the plane $z=1$ that is on the bottom of S. Now use the divergence theorem (stated below) to compute the flux of the vector field across the new closed surface S^{\prime} as a triple integral (use cylindrical coordinates). Hint: The original surface S satisfies $z=5-x^{2}-y^{2}$.
$\oiint_{S^{\prime}} \mathbf{F} \cdot \mathbf{N} d S=\iiint_{Q} \operatorname{div} \mathbf{F} d V$

Solution: The divergence is:

$$
\operatorname{div} \mathbf{F}(x, y, z)=P_{x}+Q_{y}+R_{z}=0+2 y+3
$$

Now if we rewrite our solid Q in cylindrical coordinates, we have $1 \leq z \leq 5-r^{2}$, and so by the divergence theorem,

$$
\begin{aligned}
\oiint_{S^{\prime}} \mathbf{F} \cdot \mathbf{N} d S & =\iiint_{Q} \operatorname{div} \mathbf{F} d V=\int_{0}^{2 \pi} \int_{0}^{2} \int_{1}^{5-r^{2}}(2 r \sin \theta+3) r d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2}\left(2 r^{2} \sin \theta+3 r\right)[z]_{1}^{5-r^{2}} d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2}\left(2 r^{2} \sin \theta+3 r\right)\left(4-r^{2}\right) d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2} 8 r^{2} \sin \theta-2 r^{4} \sin \theta+12 r-3 r^{3} d r d \theta \\
& =\int_{0}^{2 \pi}\left[\frac{8 r^{3}}{3} \sin \theta-\frac{2 r^{5}}{5} \sin \theta+6 r^{2}-\frac{3 r^{4}}{4}\right]_{0}^{2} d \theta \\
& =\int_{0}^{2 \pi} \frac{64}{3} \sin \theta-\frac{64}{5} \sin \theta+24-12-0 d \theta \\
& =\left[-\frac{64}{3} \cos \theta+\frac{64}{5} \cos \theta+12 \theta\right]_{0}^{2 \pi}=24 \pi
\end{aligned}
$$

