Instructions. (100 points) You have 120 minutes. Closed book, closed notes, no calculator. Show all your work in order to receive full credit.
$\left(7^{\mathrm{pts}}\right)$ 1. Consider the following points in space: $A(-2,0,1), B(1,1,-1)$, and $C(0,2,0)$.
(a) (3 pts) Find parametric equations for the line going through A and B.
(b) (4 pts) Find the area of the parallelogram with adjacent sides $A B$ and $A C$.
($\left.9^{\text {pts }}\right)$
2. Assume a particle has velocity $\mathbf{v}(t)=\left\langle 2 t, t^{2}, 2\right\rangle$ with speed measured in ft / s. (a) (4 pts) Find the position vector $\mathbf{r}(t)$ at all times if $\mathbf{r}(2)=\langle 2,3,1\rangle$.
(b) (5 pts) Find the distance traveled from $t=1 \mathrm{~s}$ to $t=3 \mathrm{~s}$.
$\left(10^{\mathrm{pts}}\right)$ 3. Let $f(x, y)=x^{2} y^{2}-x y^{2}-x^{2}-2 y^{2}+x$.
(a) (7 pts) Verify that $(1 / 2,0)$ and $(-1,1)$ are (among the) critical points of $f(x, y)$. Then classify them using the Second Partials Test.
(b) (3 pts) Find the directional derivative of f when moving from $(0,2)$ towards $(-1,3)$.
$\left(6^{\mathrm{pts}}\right)$ 4. Switch the order of integration then compute

$$
I=\int_{0}^{4} \int_{y^{\frac{3}{2}}}^{8} \sqrt{y} e^{x^{2}} d x d y
$$

($\left.9^{\text {pts }}\right) \quad$ 5. Consider a particle moving along C parametrized by $\mathbf{r}(t)=\left\langle t^{2}-1,2 t, t\right\rangle, 1 \leq t \leq 2$ through the vector field $\mathbf{F}(x, y, z)=\left\langle 2 x y-1, x^{2}-z, 2 z-y\right\rangle$.
(a) (6 pts) The field is conservative. Find all potential functions.
(b) (3 pts) Apply the Fundamental Theorem of Line Integrals to compute the circulation (work).
$\left(12^{\text {pts }}\right)$ 6. Sketch the following:
(a) (6 pts$)$ the surfaces $4 x^{2}+9 y^{2}+z^{2}=9$ and $2 x-3 y+6 z=6$ and their intersection;
(b) (6 pts) the surface given in spherical coordinates by $\phi=\frac{\pi}{4},-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$, and $0 \leq \rho \leq 2 \sec \phi$.
(11 $\left.{ }^{\text {pts }}\right)$ 7. Consider the hyperboloid of two sheets:

$$
x^{2}+4 y^{2}-z^{2}=-4
$$

(a) (4 pts) Find an equation of the tangent plane to the hyperboloid at $(1,-1,3)$.
(b) (3pts) Sketch the level curves corresponding to $z=2$ and $z=2 \sqrt{5}$.

(c) (4 pts) Fully SET UP an expression with triple integrals to represent \bar{x} in the center of mass of the solid bounded by the hyperboloid and the plane $z=2 \sqrt{5}$ if the density of the solid is given by $\rho(x, y, z)=2 y^{2} z$. DO NOT EVALUATE.
$\left(6^{\mathrm{pts}}\right)$
8. Use Green's theorem to find the circulation of the vector field $\mathbf{F}(x, y)=\left\langle y e^{x}-\sin x, 2 x y\right\rangle$ over the closed curve C described below:

9. Let $f(x, y)=(x-1)^{2}+2 y^{2}$.
(a) (6 pts) Use the appropriate chain rule (not direct substitution) to find $\frac{\partial f}{\partial s}$ for $(s, t)=(2,-1)$ if $x=2 s t, y=t^{2}-s$.
(b) (8 pts) Use the gradient and Lagrange multipliers to find the absolute minimum and maximum of the function $f(x, y)=(x-1)^{2}+2 y^{2}$ in the region $x^{2}+y^{2} \leq 4$.
$\left(16^{\text {pts }}\right)$ 10. Consider the surface S parametrized by

$$
\mathbf{r}(u, v)=\left\langle u \cos v, u \sin v, 5-u^{2}\right\rangle \quad, \quad 0 \leq u \leq 2,0 \leq v \leq 2 \pi
$$

and a vector field $\mathbf{F}=\left\langle y, y^{2}-z, 3 z\right\rangle$.

(a) (4 pts) Fully set up in (u, v) the flux of the curl across the surface oriented upwards. DO NOT evaluate.
$\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{N} d S=$
(b) (6 pts) Stokes' theorem states that:

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{N} d S=\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

for C the boundary curve of the surface S oriented here counterclockwise. Give a parametrization in t of C then use it to compute the line integral equivalent to the flux of the curl.
(c) (6 pts) Close the surface S by including the portion of the plane $z=1$ that is on the bottom of S. Now use the divergence theorem (stated below) to compute the flux of the vector field across the new closed surface S^{\prime} as a triple integral (use cylindrical coordinates). Hint: The original surface S satisfies $z=5-x^{2}-y^{2}$.

$$
\oiint_{S^{\prime}} \mathbf{F} \cdot \mathbf{N} d S=\iiint_{Q} \operatorname{div} \mathbf{F} d V
$$

