Midterm Exam 2
No book, notes, electronics, calculator, or internet access. 100 points possible. 70 minutes maximum.

1. (10 pts) Find an equation of the tangent plane of the surface $z=\ln \left(10 x^{2}+2 y^{2}+1\right)$ at the point $P(0,0,0)$.

$$
\begin{aligned}
& f(x, y)=\ln \left(10 x^{2}+2 y^{2}+1\right) \\
& z_{0}=f(0,0)=\ln (0+0+1)=0 \\
& f_{x}=\left(10 x^{2}+2 y^{2}+1\right)^{-1}(20 x) \Rightarrow f_{x}(0,0)=0 \\
& f_{y}=\left(10 x^{2}+2 y^{2}+1\right)^{-1}(4 y) \Rightarrow f_{y}(0,0)=0 \\
& z=z_{0}+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
&=0+0+0=0
\end{aligned}
$$

2. (a) (5 pts) Suppose $f(u, v)$ is a function of two variables, and that, in turn, $u=u(r, s)$ and $v=v(r, s)$. Write down the chain rule which computes $\frac{\partial f}{\partial s}$:

(b) (5 pts) Specifically suppose $f(u, v)=u v, u(r, s)=r \cos s$, and $v(r, s)=r \sin s$. Compute the following partial derivative, and express your answer as a simplified expression in variables r, s.

$$
\begin{aligned}
\frac{\partial f}{s s} & =v \cdot(r(-\sin s))+u \cdot(r \cos s) \\
& =-r \sin s \cdot r \sin s+r \operatorname{coss} \cdot r \cos s \\
& =r^{2}\left(\cos ^{2} s-\sin ^{2} s\right) \\
& =r^{2} \cos (2 s)
\end{aligned}
$$

3. Consider the function $f(x, y)=x^{3}+y^{3}-12 x-15 y+7$.
(a) (5 pts)

$$
\nabla f(x,\rangle=\left\langle 3 x^{2}-12,3 y^{2}-15\right\rangle
$$

(b) (5 pts) Find all of the critical points. Write each one as a pair (x, y)

$$
\begin{array}{ll}
{\left[\begin{array}{ll}
3 x^{2}-12=0 \\
3 y^{2}-15=0 & \text { (critical points: } \\
\Leftrightarrow & (+2,+\sqrt{5}) \\
(+2,-\sqrt{5}) \\
x= \pm 2 \\
y= \pm \sqrt{5}
\end{array}\right.} & \left(\begin{array}{l}
-2,+\sqrt{5}) \\
(-2,-\sqrt{5})
\end{array}\right.
\end{array}
$$

(c) $(5 \mathrm{pts})$ Use the second derivative test to classify all of the critical points, as local maximum, local
$f_{x x}=6 x$
$f_{y y}=6 y$
$f_{x y}=f_{y x}=0$
\Downarrow

$$
D=\delta_{x x} f_{y y}-f_{x y}{ }^{2}=36 x y
$$

$(+2,+\sqrt{5}): \quad D>0, f_{x}>0 \therefore$ local min.
$(+2,-\sqrt{5}): D<0$
\therefore Saddle
$(-2,+\sqrt{5}): D<0 \quad \therefore$ saddle
$(-2,-\sqrt{5}): D>0, f_{x x}<0 \therefore$ local max
(d) (3 pts) Consider the square $D=[-10,10] \times[-10,10]$. Does the absolute maximum of $f(x, y)$ over D occur at one of the critical points found in part (b)? State the answer yes or no, and explain in one sentence.
(Hint. You do not need to find the absolute maximum! But consider values of $f(x, y)$ when answering.)
No. The value of $f(10,10)=10^{3}+10^{3}-120-150+7$ >1000 is much bigger then the f-values at the critical points.
4. (a) (5 pts) Sketch the region

$$
D=\left\{(x, y) \mid-1 \leq y \leq 0,0 \leq x \leq 1-y^{2}\right\}
$$

(b) (10 pts) Compute and simplify the double integral over the region D in part (a):

$$
\begin{aligned}
\quad \iint_{0} y d A= & \int_{y=-1}^{0} \int_{x=0}^{x=1-y^{2}} x y d x d y \\
= & \int_{-1}^{0} y\left[\frac{x^{2}}{2}\right]_{0}^{1-y^{2}} d y=\frac{1}{2} \int_{-1}^{0} y\left(1-y^{2}\right)^{2} d y \\
= & \frac{1}{2} \int_{-1}^{0} y-2 y^{3}+y^{5} d y=\frac{1}{2}\left[\frac{y^{2}}{2}-\frac{y^{4}}{2}+\frac{y^{6}}{6}\right]_{-1}^{0} \\
& \left.=\frac{1}{2}\left(0-\frac{1}{2} \frac{-1}{2}+\frac{1}{6}\right)=\frac{12}{1}\right)
\end{aligned}
$$

5. (10 pts) Set up, and then evaluate, a double integral for the area of one leaf of the rose $r=\sin (2 \theta)$, as shown in the figure.

6. (10 pts) Define $B=\{(x, y, z) \mid 0 \leq x \leq 1,0 \leq y \leq \pi,-1 \leq z \leq 1\}$, a rectangular solid box. Evaluate the triple integral:

$$
\begin{aligned}
& \iiint_{B}^{x \sin y d V}= \\
= & \int_{x=0}^{1} \int_{y=0}^{\pi} \int_{z=-1}^{1} x \sin y d z d y d x \\
= & \left(\int_{0}^{1} x d x\right)\left(S_{0}^{\pi} \sin y d y\right)\left(\int_{-1}^{1} d z\right) \\
= & \frac{1}{2} \cdot[-\cos y]_{0}^{\pi} \cdot 2=-(-1)-(-1)=(2)
\end{aligned}
$$

7. (10 pts) The region $E=\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1, x \geq 0, x \geq y,-1 \leq z \leq 1\right\}$ is shown below. Use cylindrical coordinates to evaluate the triple integral $\iiint_{E} f(x, y, z) d V$ if $f(x, y, z)=x y$.

8. (10 pts) Find the average value of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ over the unit sphere $S=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1\right\}$.
(Hints. What coordinates would make this easiest? Yes, you may use the fact that the volume of the unit sphere is $4 \pi / 3$; there is no need to justify it.)

$$
\begin{aligned}
& a v_{f}=\frac{1}{V_{s}} \iiint_{S} x^{2}+y^{2}+z^{2} d V \\
& =\frac{3}{4 \pi} \int_{\theta=0}^{2 \pi} \int_{\varphi=0}^{\pi} \int_{\rho=0}^{1} \rho^{2} \cdot \rho^{2} \sin \varphi d \rho d \varphi+i \cdot a l! \\
& =\frac{3}{4 \pi}\left(S_{0}^{2 \pi} d \theta\right)\left(\int_{0}^{\pi} \sin \varphi d \varphi\right)\left(S_{0}^{1} \rho^{4} d \rho\right) \\
& =\frac{3}{44 \pi} \cdot 2 \pi \cdot[-\cos \varphi]_{0}^{\pi}\left[\frac{\rho^{5}}{5}\right]_{0}^{1}=\frac{3}{2} \cdot 2 \cdot \frac{1}{5}=\left(\frac{3}{5}\right)
\end{aligned}
$$

9. (7 pts) Use spherical coordinates to fully set up a triple integral for the volume which is outside the cone $z^{2}=x^{2}+y^{2}$ but inside the unit sphere $x^{2}+y^{2}+z^{2}=1$. Do not evaluate the integral. (Hint. Start by drawing a decent sketch!)
 coordinates, and write your simplified answer in the form $\rho=f(\varphi, \theta)$.
in spherical: $x=\rho \sin \varphi \cos \theta, y=\rho \sin \varphi \sin \theta$

$$
\begin{gathered}
x^{2}+y^{2}=9 \Leftrightarrow \quad \rho^{2} \sin ^{2} \varphi \cos ^{2} \theta+\rho^{2} \sin ^{2} \varphi \sin ^{2} \theta=9 \\
\rho^{2} \sin ^{2} \varphi\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=3^{2} \\
\rho^{2} \sin ^{2} \varphi=3^{2}<\rho \geqslant 0 \text { and } \\
\rho \sin \varphi=3 \quad \begin{array}{l}
\text { sin } \varphi \geqslant 0 \\
\text { apply wallop } 30
\end{array} \\
\rho=\frac{3}{\sin \varphi}=3 \csc \varphi
\end{gathered}
$$

BLANK SPACE

